Frobenius variety generated by a family of numerical semigroups

Definition

The definition of Frobenius variety generated by a family of numerical semigroups comes from the following result.

\(\textbf{Proposition}\): The intersection of Frobenius varieties is a Frobenius variety.

Let \(X\) be a family of numerical semigroups. It is defined the Frobenius variety generated by \(X\) as the intersection of all Frobenius varieties containing \(X\), and it is denoted by \(\mathcal{F}(X)\). If it is defined the set

\[ Ch(X) = \bigcup_{S \in X} Ch(S), \]

where \(Ch(S)\) denotes the chain associated to S, it can be proven that \(\mathcal{F}(X)\) is the set of all finite intersections of elements in \(Ch(X)\).

Examples

\(\circ\) Let \(X = \{\langle 4,5,6 \rangle, \langle 3,4 \rangle, \langle 2, 7 \rangle\} = \{S_1, S_2, S_3\}\). It is easy to check that

\[ Ch(S_1) = \{S_1, \langle 4,5,6,7 \rangle, \langle 3,4,5 \rangle, \langle 2,3 \rangle, \mathbb{N}\}, \]

\[ Ch(S_2) = \{S_2, \langle 3,4,5 \rangle, \langle 2,3 \rangle, \mathbb{N}\}, Ch(S_3) = \{S_3, \langle 2,5 \rangle, \langle 2,3 \rangle, \mathbb{N}\}. \]

Then,

\[ Ch(X) = \bigcup_{S \in X} Ch(S) = \{S_1, S_2, S_3, \langle 4,5,6,7 \rangle, \langle 3,4,5 \rangle, \langle 2,5 \rangle, \langle 2,3 \rangle, \mathbb{N} \}, \]

and \(\mathcal{F}(X)\) is the set of all finite intersections of elements in \(Ch(X)\).

Examples with GAP

Nowadays, there are no functions in package NumericalSgps related to Frobenius variety generated by a family of numerical semigroups. However, given a family of numerical semigroups \(X\), the following function computes \(Ch(X)\).

gap> ChainOfFamilyOfNumericalSemigroups := function(X)
>       local Chain, S;
>       Chain := [];
>       for S in X do
>           if not IsNumericalSemigroup(S) then
>                   Error("The argument must be a list of Numerical Semigroups");
>           fi;
>           Chain := Union(Chain, ChainOfNumericalSemigroup(S));
>       od;
>       return Chain;
> end;
function( X ) ... end

The function ChainOfNumericalSemigroup is not implemented in GAP, it computes \(Ch(S)\) where \(S\) denotes a numerical semigroup.

gap> ChainOfNumericalSemigroup := function(S)
>       local g, C, i, F, Min_gen, I, T;
>       if not IsNumericalSemigroup(S) then
>               Error("The argument must be a Numerical Semigroup");
>       fi;
>       g := Length(Gaps(S));
>       C := [S];
>       for i in [1..g] do
>               F := FrobeniusNumber(C[i]);
>               Min_gen := MinimalGenerators(C[i]);
>               I := Union(Min_gen, [F]);
>               T := NumericalSemigroupByGenerators(I);
>               Add(C, T);
>       od;
>       return C;
> end;
function( S ) ... end

\(\diamond\) Let \(I = \{\langle 2,5 \rangle, \langle 3,7 \rangle, \langle 3,8 \rangle, \langle 3,4,5 \rangle \}\), in GAP:

gap> S_1 := NumericalSemigroup(2,5);
<Numerical semigroup with 2 generators>
gap> S_2 := NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> S_3 := NumericalSemigroup(3,8);
<Numerical semigroup with 2 generators>
gap> S_4 := NumericalSemigroup(3,4,5);
<Numerical semigroup with 3 generators>
gap> I := [S_1, S_2, S_3, S_4];
[ <Numerical semigroup with 2 generators>, <Numerical semigroup with 2 generators>,
  <Numerical semigroup with 2 generators>, <Numerical semigroup with 3 generators>
 ]

From the functions defined above,

gap> C := ChainOfFamilyOfNumericalSemigroups(I);
[ <The numerical semigroup N>, <Numerical semigroup with 2 generators>,
  <Numerical semigroup with 2 generators>, <Numerical semigroup with 3 generators>,
  <Numerical semigroup with 3 generators>, <Numerical semigroup with 3 generators>,
  <Numerical semigroup with 3 generators>, <Numerical semigroup with 2 generators>,
  <Numerical semigroup with 3 generators>, <Numerical semigroup with 3 generators>,
  <Numerical semigroup with 2 generators> ]
gap> List(C, S -> MinimalGenerators(S));
[ [ 1 ], [ 2, 3 ], [ 2, 5 ], [ 3 .. 5 ], [ 3, 5, 7 ], [ 3, 7, 8 ], [ 3, 7, 11 ],
  [ 3, 7 ], [ 3, 8, 10 ], [ 3, 8, 13 ], [ 3, 8 ] ]

Therefore,

\[ Ch(I) = \{S_1, S_2, S_3, S_4, \langle 2,3 \rangle, \langle 3,5,7 \rangle, \langle 3,7,8 \rangle, \]

\[ \langle 3,7,11 \rangle, \langle 3,8,10 \rangle, \langle 3,8,13 \rangle, \mathbb{N} \}, \]

and the Frobenius variety generated by \(I\) is the set of all finite intersections of elements in \(Ch(I)\).

References

Delgado, M., P. A. Garcia-Sanchez, and J. Morais. 2024. NumericalSgps, a Package for Numerical Semigroups, Version 1.4.0.” https://gap-packages.github.io/ numericalsgps.
Rosales, J. C., and P. A. Garcı́a-Sánchez. 2009. Numerical Semigroups. Springer.