Pi-semigroup

Definition

Let \(T\) be a numerical semigroup. It is said that \(S\) is a pi-semigroup if there exists a numerical semigroup \(S\) such that \(T = (x + S) \cup \{0\}\) with \(x \in S \setminus \{0\}\). This definition comes from the concept of principal ideal.

For a given numerical semigroup \(S\), it is defined the set of pi-semigroup of \(S\) as

\[ \mathscr{P}I(S) = \{(x + S) \cup \{0\} ~ | ~ x \in S \setminus \{0\}\}. \]

If \(x \ne 1\) and \(T = (x+S) \cup \{0\}\), it can be proven that \(F(T) = F(S) + x\), \(g(T) = g(S) + x - 1\) and \(m(T) = x\), where \(F(T)\) denotes the Frobenius number of \(T\), \(g(T)\) denotes the genus of \(T\) and \(m(T)\) denotes the multiplicity of \(T\).

Examples

\(\circ\) Let \(S = \langle 5, 6, 8 \rangle\) and \(T = \langle 6, 11, 16, 19, 21 \rangle\). With few operations, it turns out that \(S = \{0, 5, 6, 8, 10, \rightarrow\}\) and \(T = \{0, 6, 11, 12, 14, 16, \rightarrow\}\), from which it is deduced that

\[ T = \{0, 6, 11, 12, 14, 16, \rightarrow\} = (6 + \{0, 5, 6, 8, 10, \rightarrow\}) \cup \{0\} = (6 + S) \cup \{0\}, \]

concluding that \(T\) is a pi-semigroup of \(S\).

Examples with GAP

Nowadays, there are no functions in NumericalSgps related to pi-semigroups. However, given two numerical semigroups \(T\) and \(S\), the following function returns true if \(T\) is a pi-semigroup of \(S\).

gap> IsPiSemigroup := function(T,S)
>       local m, I;
>       if not IsNumericalSemigroup(T) then
>           Error("First argument must be a Numerical Semigroup");
>       fi;
>       if not IsNumericalSemigroup(S) then
>           Error("Second argument must be a Numerical Semigroup");
>       fi;
>       m := Multiplicity(T);
>       I := m + S;
>       return SmallElements(T) = Union(SmallElements(I),[0]);
> end;
function( T, S ) ... end

Moreover, given a numerical semigroup \(S\) and \(s \in S \setminus \{0\}\), the following function returns \(T = (s + S) \cup \{0\}\).

gap> PiSemigroup := function(S, s)
>       local I, sm_elem;
>       if not IsNumericalSemigroup(S) then
>           Error("First argument must be a Numerical Semigroup");
>       fi;
>       if not IsPosInt(s) then
>           Error("Second argument must be a positive integer");
>       fi;
>       if not s in S then
>           Error("Second argument must be an element of the first argument");
>       fi;
>       I := s + S;
>       sm_elem := Union(SmallElements(I), [0]);
>       return NumericalSemigroupBySmallElements(sm_elem);
> end;
function( S, s ) ... end

\(\diamond\) Let \(S = \langle 9, 15, 37, 41, 58, 62 \rangle\) and \(T = \langle 9, 24, 39, 46, 50, 61, 65, 67, 71 \rangle\), in GAP:

gap> S := NumericalSemigroup(9, 15, 37, 41, 58, 62);
<Numerical semigroup with 6 generators>
gap> T := NumericalSemigroup(9, 24, 39, 46, 50, 61, 65, 67, 71);
<Numerical semigroup with 9 generators>

It holds that \(T\) is a pi-semigroup of \(S\). Indeed,

gap> IsPiSemigroup(T,S);
true
gap> Multiplicity(T);
9

Given a numerical semigroup \(S\), the function Multiplicity returns the multiplicity of \(S\). Therefore, \(T = (m(T) + S) \cup \{0\} = (9+S) \cup \{0\}\).

\(\diamond\) Let \(S = \langle 7, 13, 15 \rangle\) and \(s= 22 \in S\), in GAP:

gap> S := NumericalSemigroup(7, 13, 15);
<Numerical semigroup with 3 generators>
gap> s := 22;
22

In order to obtain \(T = (s + S) \cup \{0\}\), we can use the function defined above,

gap> T := PiSemigroup(S, 22);
<Numerical semigroup>
gap> MinimalGenerators(T);
[ 22, 29, 35, 36, 37, 42, 43, 48, 49, 50, 52, 55, 56, 61, 62, 63, 67, 68, 69, 75, 76, 82 ]

Given a numerical semigroup \(T\), the function MinimalGenerators returns the minimal generators of \(T\). Then,

\[ T = (22 + S) \cup \{0\} = \langle 22, 29, 35, 36, 37, 42, 43, 48, 49, 50, 52, 55, 56, 61, \]

\[ 62, 63, 67, 68, 69, 75, 76, 82 \rangle. \]

References

Delgado, M., P. A. Garcia-Sanchez, and J. Morais. 2024. NumericalSgps, a Package for Numerical Semigroups, Version 1.4.0.” https://gap-packages.github.io/ numericalsgps.
Rosales, J. C., and P. A. Garcı́a-Sánchez. 2009. Numerical Semigroups. Springer.