Alpha rectangular numerical semigroup

Definition

Let \(S\) be a numerical semigroup minimally generated by \(P(S) = \{n_1, \ldots, n_e\}\) with \(n_1 < n_2 < \ldots < n_e\). It is defined for each \(i \in \{2, \ldots, e\}\) ,

\[ \alpha_i = \max \{h \in \mathbb{N} ~ | ~ h n_i \in Ap(S, n_1) \}, \]

where \(Ap(S, n_1)\) denotes the Apéry set of \(S\) in \(n_1\). It is said that \(S\) has \(\alpha-\)rectangular Apéry set if

\[ Ap(S, n_1) = \left \{ \sum_{i = 2}^e \lambda_i n_i ~ | ~ 0 \le \lambda_i \le \alpha_i \right \}. \]

It can be proven that the inclusion \(\subseteq\) is always fulfilled and if \(S\) is \(\alpha-\)rectangular, then \(S\) is \(\beta-\)rectangular and \(\gamma-\)rectangular. Moreover, \(S\) is \(\alpha-\)rectangular if, and only if, \(S\) is symmetric and has Apéry set of unique expression.

Examples

\(\circ\) Let \(S = \langle 4, 6, 11 \rangle = \{0, 4, 6, 8, 10, 11, 12, 14, \rightarrow\}\). The Apéry set of \(S\) in \(n_1 = 4\) is \(Ap(S, n_1) = \{0, 6, 11, 17\}\). With few calculations,

\[ \alpha_2 = \max \{h \in \mathbb{N} ~ | ~ 6h \in Ap(S, n_1) \} = 1, \]

\[ \alpha_3 = \max \{h \in \mathbb{N} ~ | ~ 11h \in Ap(S, n_1) \} = 1. \]

Then,

\[ \left \{ \sum_{i = 2}^3 \lambda_i n_i ~ | ~ 0 \le \lambda_i \le \alpha_i \right \} = \{0, n_2, n_3, n_2 + n_3\} = \{0, 6, 11, 17\} = Ap(S, n_1), \]

and \(S\) is \(\alpha-\)rectangular.

Examples with GAP

The following example is made with the package NumericalSgps in GAP.

\(\diamond\) Let \(S = \langle 12, 21, 30, 39, 56, 64 \rangle\), in GAP:

gap> S := NumericalSemigroup(12, 21, 30, 39, 56, 64);
<Numerical semigroup with 6 generators>

Given a numerical semigroup \(S\), the function IsAperySetAlphaRectangular returns true if \(S\) is \(\alpha-\)rectangular and false otherwise.

gap> IsAperySetAlphaRectangular(S);
false

\(\diamond\) Given a numerical semigroup \(S\), the following functions returns the constants \(\alpha_2, \ldots, \alpha_e\).

gap> AlphaConstantsOfNumericalSemigroup := function(S)
>       local e, min_gen, Ap, list_alpha, i, h, n_i;
>       if not IsNumericalSemigroup(S) then
>           Error("The argument must be a Numerical Semigroup");
>       fi;
>       e := EmbeddingDimension(S);
>       min_gen := MinimalGenerators(S);
>       Ap := AperyList(S);
>       list_alpha := [];
>       for i in [2..e] do
>           h := 1;
>           n_i := min_gen[i];
>           while h*n_i in Ap do
>             h := h + 1;
>           od;
>           Add(list_alpha, h-1);
>       od;
>       return list_alpha;
> end;
function( S ) ... end

Let \(S = \langle 39, 56, 93, 96, 104, 105 \rangle\), in GAP:

gap> S := NumericalSemigroup(39, 56, 93, 96, 104, 105);
<Numerical semigroup with 6 generators>

From the function defined above,

gap> AlphaConstantsOfNumericalSemigroup(S);
[ 5, 2, 2, 2, 1 ]

\(\diamond\) Given \(n,a,b,k\) integers, the following function tries to find in \(k\) attempts a ‘’random’’ \(\alpha-\)rectangular numerical semigroup with no more than \(n\) generators in \([a..b]\).

gap> RandomAlphaRectangularNumericalSemigroup := function(n, a, b, k)
>       local i;
>       if not IsPosInt(n) then
>           Error("First argument must be a positive integer");
>       fi;
>       if not IsPosInt(a) then
>           Error("Second argument must be a positive integer");
>       fi;
>       if not IsPosInt(b) then
>           Error("Third argument must be a positive integer");
>       fi;
>       if not IsPosInt(k) then
>           Error("Fourth argument must be a positive integer");
>       fi;
> 
>       if a >= b then
>           Error("The second argument must be smaller than the third argument");
>       fi;
>       for i in [1..k] do
>         S := RandomNumericalSemigroup(n, a, b);
>         if IsAperySetAlphaRectangular(S) then
>             return S;
>         fi;
>       od;
>       return fail;
> end;
function( n, a, b, k ) ... end

Let us consider \(n = 100, a = 30, b = 5000\) and \(k = 1000\),

gap> S := RandomAlphaRectangularNumericalSemigroup(100, 30, 5000, 1000);
<Numerical semigroup with 3 generators>
gap> MinimalGenerators(S);
[ 45, 80, 153 ]

Then, \(S = \langle 45, 80, 153 \rangle\) is an \(\alpha-\)rectangular numerical semigroup.

References

D’Anna, Micale, M., and Sammartano. 2014. “Classes of Complete Intersection Numerical Semigroups.” Semigroup Forum 88: 453–67. https://doi.org/10.1007/s00233-013-9547-y.
Delgado, M., P. A. Garcia-Sanchez, and J. Morais. 2024. NumericalSgps, a Package for Numerical Semigroups, Version 1.4.0.” https://gap-packages.github.io/ numericalsgps.