L-shape of Apéry set
Definition
Let \(S\) be a numerical semigroup minimally generated by \(P(S) = \{n_1, \ldots, n_e\}\) and \(m \in S \setminus \{0\}\). It is said that \(L \subseteq \mathbb{N}^e\) is an \(L-\)shape associated to \(Ap(S,m)\) if the following two properties hold.
The map \((x_1, \ldots, x_e) \to n_1x_1 + \cdots + n_e x_e\) is a bijection from \(L\) to \(Ap(S,m)\).
If \((x_1, \ldots, x_e) \in L\), then \((y_1, \ldots, y_e) \in L\) for every \((y_1, \ldots, y_e) \in \mathbb{N}^e\) such that \(y_i \le x_i\) for all \(i \in \{1, \ldots, e\}\).
If \(\mathbf{Z}(s)\) is the set of factorizations for any \(s \in S\), the first condition means that \(|\mathbf{Z}(s) \cap L| = 1\) for all \(s \in Ap(s,m)\). Moreover, it can be proven that if \(x \in Ap(S,m)\) and \(x - y \in S\), then \(y \in Ap(S,m)\), and the second condition means that \((y_1, \ldots, y_e)\) is a factorization of an element in \(Ap(S,m)\).
Examples
\(\circ\) Let \(S = \langle 3, 5, 7 \rangle = \{0, 3, 5, \rightarrow \}\). Let us prove that
\[ L = \{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0) \}, \]
is an \(L-\)shape of \(Ap(S,7)\). From the definitions,
\[ Ap(S, 7) := \{s \in S ~ | ~ s - 4 \not \in S\} = \{0, 8, 9, 3, 11, 5, 6 \}, \]
and
\[ \mathbf{Z}(0) = \{(0,0,0)\}, ~ \mathbf{Z}(8) = \{(1,1,0)\}, ~ \mathbf{Z}(9) = \{(3,0,0)\}, ~ \mathbf{Z}(3) = \{(1,0,0)\}, \]
\[ \mathbf{Z}(11) = \{(2,1,0)\}, ~ \mathbf{Z}(5) = \{(0,1,0)\}, ~ \mathbf{Z}(6) = \{(2,0,0)\}. \]
Since each element has an unique factorization and \(L\) is the union of all factorizations, it is concluded that \(L\) is an \(L-\)shape of \(Ap(S,7)\). In fact, is the unique \(L-\)shape of \(Ap(S,7)\).
Examples with GAP
The following example is made with the package NumericalSgps in GAP.
\(\diamond\) Let \(S = \langle 13, 14, 33, 64 \rangle\), in GAP:
gap> S := NumericalSemigroup(13, 14, 33, 64);
<Numerical semigroup with 4 generators>
Given a numerical semigroup \(S\) minimally generated by \(P = \{n_1 < n_2 < \cdots < n_e\}\), the functions LShapes
and LShapesOfNumericalSemigroup
return a list with all L-shapes of \(Ap(S, n_e)\).
gap> LShapes(S);
0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 2, 0, 0 ], [ 1, 1, 0 ], [ 0, 2, 0 ],
[ [ [ 0, 0, 1 ], [ 3, 0, 0 ], [ 2, 1, 0 ], [ 1, 2, 0 ], [ 0, 3, 0 ], [ 1, 0, 1 ],
[ 0, 1, 1 ], [ 4, 0, 0 ], [ 3, 1, 0 ], [ 2, 2, 0 ], [ 1, 3, 0 ], [ 0, 4, 0 ],
[ 2, 0, 1 ], [ 1, 1, 1 ], [ 0, 2, 1 ], [ 5, 0, 0 ], [ 0, 0, 2 ], [ 3, 2, 0 ],
[ 2, 3, 0 ], [ 1, 4, 0 ], [ 0, 5, 0 ], [ 3, 0, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ],
[ 0, 3, 1 ], [ 1, 0, 2 ], [ 0, 1, 2 ], [ 3, 3, 0 ], [ 2, 4, 0 ], [ 1, 5, 0 ],
[ 0, 6, 0 ], [ 4, 0, 1 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 1, 3, 1 ], [ 0, 4, 1 ],
[ 1, 1, 2 ], [ 0, 2, 2 ], [ 3, 4, 0 ], [ 2, 5, 0 ], [ 0, 7, 0 ], [ 0, 0, 3 ],
[ 3, 2, 1 ], [ 2, 3, 1 ], [ 1, 4, 1 ], [ 1, 2, 2 ], [ 0, 3, 2 ], [ 3, 5, 0 ],
[ 0, 8, 0 ], [ 0, 1, 3 ], [ 3, 3, 1 ], [ 2, 4, 1 ], [ 1, 3, 2 ], [ 0, 4, 2 ],
[ 0, 9, 0 ], [ 0, 2, 3 ], [ 1, 4, 2 ], [ 0, 10, 0 ] ],
[ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 2, 0, 0 ], [ 1, 1, 0 ], [ 0, 2, 0 ],
[ [ 0, 0, 1 ], [ 3, 0, 0 ], [ 2, 1, 0 ], [ 1, 2, 0 ], [ 0, 3, 0 ], [ 1, 0, 1 ],
[ 0, 1, 1 ], [ 4, 0, 0 ], [ 3, 1, 0 ], [ 2, 2, 0 ], [ 1, 3, 0 ], [ 0, 4, 0 ],
[ 2, 0, 1 ], [ 1, 1, 1 ], [ 0, 2, 1 ], [ 5, 0, 0 ], [ 0, 0, 2 ], [ 3, 2, 0 ],
[ 2, 3, 0 ], [ 1, 4, 0 ], [ 0, 5, 0 ], [ 3, 0, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ],
[ 0, 3, 1 ], [ 1, 0, 2 ], [ 0, 1, 2 ], [ 3, 3, 0 ], [ 2, 4, 0 ], [ 1, 5, 0 ],
[ 0, 6, 0 ], [ 4, 0, 1 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 1, 3, 1 ], [ 0, 4, 1 ],
[ 1, 1, 2 ], [ 0, 2, 2 ], [ 3, 4, 0 ], [ 2, 5, 0 ], [ 0, 7, 0 ], [ 0, 0, 3 ],
[ 3, 2, 1 ], [ 2, 3, 1 ], [ 1, 4, 1 ], [ 1, 2, 2 ], [ 0, 3, 2 ], [ 3, 5, 0 ],
[ 1, 0, 3 ], [ 0, 1, 3 ], [ 3, 3, 1 ], [ 2, 4, 1 ], [ 1, 3, 2 ], [ 0, 4, 2 ],
[ 1, 1, 3 ], [ 0, 2, 3 ], [ 1, 4, 2 ], [ 1, 2, 3 ] ],
[ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 2, 0, 0 ], [ 1, 1, 0 ], [ 0, 2, 0 ],
[ [ 0, 0, 1 ], [ 3, 0, 0 ], [ 2, 1, 0 ], [ 1, 2, 0 ], [ 0, 3, 0 ], [ 1, 0, 1 ],
[ 0, 1, 1 ], [ 4, 0, 0 ], [ 3, 1, 0 ], [ 2, 2, 0 ], [ 1, 3, 0 ], [ 0, 4, 0 ],
[ 2, 0, 1 ], [ 1, 1, 1 ], [ 0, 2, 1 ], [ 5, 0, 0 ], [ 0, 0, 2 ], [ 3, 2, 0 ],
[ 2, 3, 0 ], [ 1, 4, 0 ], [ 0, 5, 0 ], [ 3, 0, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ],
[ 0, 3, 1 ], [ 1, 0, 2 ], [ 0, 1, 2 ], [ 3, 3, 0 ], [ 2, 4, 0 ], [ 1, 5, 0 ],
[ 0, 6, 0 ], [ 4, 0, 1 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 1, 3, 1 ], [ 0, 4, 1 ],
[ 1, 1, 2 ], [ 0, 2, 2 ], [ 3, 4, 0 ], [ 2, 5, 0 ], [ 5, 0, 1 ], [ 0, 0, 3 ],
[ 3, 2, 1 ], [ 2, 3, 1 ], [ 1, 4, 1 ], [ 1, 2, 2 ], [ 0, 3, 2 ], [ 3, 5, 0 ],
[ 1, 0, 3 ], [ 0, 1, 3 ], [ 3, 3, 1 ], [ 2, 4, 1 ], [ 1, 3, 2 ], [ 0, 4, 2 ],
[ 1, 1, 3 ], [ 0, 2, 3 ], [ 1, 4, 2 ], [ 1, 2, 3 ] ],
[ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 2, 0, 0 ], [ 1, 1, 0 ], [ 0, 2, 0 ],
[ [ 0, 0, 1 ], [ 3, 0, 0 ], [ 2, 1, 0 ], [ 1, 2, 0 ], [ 0, 3, 0 ], [ 1, 0, 1 ],
[ 0, 1, 1 ], [ 4, 0, 0 ], [ 3, 1, 0 ], [ 2, 2, 0 ], [ 1, 3, 0 ], [ 0, 4, 0 ],
[ 2, 0, 1 ], [ 1, 1, 1 ], [ 0, 2, 1 ], [ 5, 0, 0 ], [ 4, 1, 0 ], [ 3, 2, 0 ],
[ 2, 3, 0 ], [ 1, 4, 0 ], [ 0, 5, 0 ], [ 3, 0, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ],
[ 0, 3, 1 ], [ 5, 1, 0 ], [ 4, 2, 0 ], [ 3, 3, 0 ], [ 2, 4, 0 ], [ 1, 5, 0 ],
[ 0, 6, 0 ], [ 4, 0, 1 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 1, 3, 1 ], [ 0, 4, 1 ],
[ 5, 2, 0 ], [ 4, 3, 0 ], [ 3, 4, 0 ], [ 2, 5, 0 ], [ 0, 7, 0 ], [ 4, 1, 1 ],
[ 3, 2, 1 ], [ 2, 3, 1 ], [ 1, 4, 1 ], [ 5, 3, 0 ], [ 4, 4, 0 ], [ 3, 5, 0 ],
[ 0, 8, 0 ], [ 4, 2, 1 ], [ 3, 3, 1 ], [ 2, 4, 1 ], [ 5, 4, 0 ], [ 4, 5, 0 ],
[ 0, 9, 0 ], [ 4, 3, 1 ], [ 5, 5, 0 ], [ 0, 10, 0 ] ],
[ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 2, 0, 0 ], [ 1, 1, 0 ], [ 0, 2, 0 ],
[ [ 0, 0, 1 ], [ 3, 0, 0 ], [ 2, 1, 0 ], [ 1, 2, 0 ], [ 0, 3, 0 ], [ 1, 0, 1 ],
[ 0, 1, 1 ], [ 4, 0, 0 ], [ 3, 1, 0 ], [ 2, 2, 0 ], [ 1, 3, 0 ], [ 0, 4, 0 ],
[ 2, 0, 1 ], [ 1, 1, 1 ], [ 0, 2, 1 ], [ 5, 0, 0 ], [ 4, 1, 0 ], [ 3, 2, 0 ],
[ 2, 3, 0 ], [ 1, 4, 0 ], [ 0, 5, 0 ], [ 3, 0, 1 ], [ 2, 1, 1 ], [ 1, 2, 1 ],
[ 0, 3, 1 ], [ 5, 1, 0 ], [ 4, 2, 0 ], [ 3, 3, 0 ], [ 2, 4, 0 ], [ 1, 5, 0 ],
[ 0, 6, 0 ], [ 4, 0, 1 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 1, 3, 1 ], [ 0, 4, 1 ],
[ 5, 2, 0 ], [ 4, 3, 0 ], [ 3, 4, 0 ], [ 2, 5, 0 ], [ 5, 0, 1 ], [ 4, 1, 1 ],
[ 3, 2, 1 ], [ 2, 3, 1 ], [ 1, 4, 1 ], [ 5, 3, 0 ], [ 4, 4, 0 ], [ 3, 5, 0 ],
[ 5, 1, 1 ], [ 4, 2, 1 ], [ 3, 3, 1 ], [ 2, 4, 1 ], [ 5, 4, 0 ], [ 4, 5, 0 ],
[ 5, 2, 1 ], [ 4, 3, 1 ], [ 5, 5, 0 ], [ 5, 3, 1 ] ] ]
[ gap> LShapesOfNumericalSemigroup(S) = LShapes(S);
true
References
https://gap-packages.github.io/
numericalsgps
.