Graph associated to an element by Apéry set

Definition

Let \(S\) be a numerical semigroup with relation order \(\le_S\), \(n \in S\) and let \(Ap(S,n)\) be the Apéry set of \(S\) with respect to \(n\). It is defined the graph associated to \(n\) by Apéry list as the graph with vertices \(Ap(S, n)\) and \((u,v)\) is an edge if, and only if, \(u \le_S v\), that is, \(v - u \in S\). The graph is denoted by \((Ap(S,n), E_n)\).

It is well known that \(\le_S\) is a partial order. Moreover, if \(v \in Ap(S,n), u \in S\) and \(v - u \in S\), then \(v-u \in Ap(S,n)\).

Examples

\(\circ\) Let \(S = \langle 3, 7, 11 \rangle = \{0, 3, 6, 7, 9 , \rightarrow \}\) and \(n = 7\). The Apéry set of \(S\) with respect to \(n\) is

\[ Ap(S, n) = \{s \in S ~ | ~ s - n \not \in S\}, \]

and \(|Ap(S, n)| = n\), where it is deduced that \(Ap(S, 7) = \{0, 3, 6, 9, 11, 12, 15\}\). Taking into account that if \((u,v)\) is an edge, then \(u \le v\), with few calculations we have that the set of edges is

\[ E_7 = \{(0, v) ~ | ~ v \in Ap(S, 7) \} \cup \{(v,v) ~ | ~ v \in Ap(S,7)\} \cup B_3 \cup B_6 \cup B_9 \cup B_{12}, \]

where

\[ B_3 = \{(3, v) ~ | ~ v \in \{6,9,12,15\} \}, ~~ B_6 = \{(6, v) ~ | ~ v \in \{9,12,15\}\}, \]

\[ B_9 = \{(9,12), (9,15)\}, ~~ B_{12} = \{(12,15)\}. \]

The graph \((Ap(S,7), E_7)\) is as follows.

NSGraph 0 0 0->0 3 3 0->3 6 6 0->6 9 9 0->9 11 11 0->11 12 12 0->12 15 15 0->15 3->3 3->6 3->9 3->12 3->15 6->6 6->9 6->12 6->15 9->9 9->12 9->15 11->11 12->12 12->15 15->15

Since the relation that defines the graph is a partial order, it is more representative the Hasse diagram associated.

NSGraph 1 0 2 3 2->1 3 6 3->2 4 9 4->3 5 11 5->1 6 12 6->4 7 15 7->6

Examples with GAP

The following example is made with the package NumericalSgps in GAP.

\(\diamond\) Let \(S = \langle 8, 67, 106, 140 \rangle\), in GAP:

gap> S := NumericalSemigroup(8, 67, 106, 140);
<Numerical semigroup with 4 generators>

Given an Apéry set \(Ap(S, n)\), the function AperyListOfNumericalSemigroupAsGraph returns the adjacency list of the graph associated to \(n\) by Apéry set. Given a numerical semigroup \(S\) and an element \(n \in S\), the function AperyList returns \(Ap(S, n)\).

gap> Ap := AperyList(S,8);
[ 0, 201, 106, 67, 140, 173, 134, 207 ]
gap> AperyListOfNumericalSemigroupAsGraph(Ap);
[ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [ 67, 134, 173, 
201, 207 ],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [ 106, 173 ],,,,,,,,,,,,,,,,,,,,
,,,,,,,, [ 134, 201 ],,,,,, [ 140, 207 ],,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,, [173 ],,,,,,,,,,,,,,,,,,,,,,,,,,,, [ 201 ],,,,,, [ 207 ] ]

The graph \((Ap(S,8), E_8)\) is as follows.

NSGraph 0 0 0->0 67 67 0->67 106 106 0->106 134 134 0->134 140 140 0->140 173 173 0->173 201 201 0->201 207 207 0->207 67->67 67->134 67->173 67->201 67->207 106->106 106->173 134->134 134->201 140->140 140->207 173->173 201->201 207->207

The Hasse diagram associated is

NSGraph 1 0 2 67 2->1 3 106 3->1 4 134 4->2 5 140 5->1 6 173 6->2 6->3 7 201 7->4 8 207 8->2 8->5

\(\diamond\) Let \(S = \langle 22, 26, 38, 45, 58 \rangle\) and \(n = 26\), in GAP:

gap> S := NumericalSemigroup(22, 26, 38, 45, 58);
<Numerical semigroup with 5 generators>

Given a numerical semigroup \(S\) and an element \(n \in S\), the function HasseDiagramOfAperyListOfNumericalSemigroup returns the Hasse diagram by the relation \(u \le v\) if, and only if, \(v - u \in S\), with \(u,v \in Ap(S, n)\). The function DotBinaryRelation returns a GraphViz dot that represents the given binary relation.

gap> H := HasseDiagramOfAperyListOfNumericalSemigroup(S, 26);
<general mapping: Domain([ 0, 22, 38, 44, 45, 58, 60, 66, 67, 76, 80, 82, 83, 88,
  89, 98, 103, 105, 111, 120, 121, 125, 127, 133, 143, 165 ]) -> Domain(
[ 0, 22, 38, 44, 45, 58, 60, 66, 67, 76, 80, 82, 83, 88, 89, 98, 103, 105, 111,
  120, 121, 125, 127, 133, 143, 165 ]) >
gap> h := DotBinaryRelation(H);;
gap> Print(h);
digraph  NSGraph{rankdir = TB; edge[dir=back];
1 [label="0"];
2 [label="22"];
3 [label="38"];
4 [label="44"];
5 [label="45"];
6 [label="58"];
7 [label="60"];
8 [label="66"];
9 [label="67"];
10 [label="76"];
11 [label="80"];
12 [label="82"];
13 [label="83"];
14 [label="88"];
15 [label="89"];
16 [label="98"];
17 [label="103"];
18 [label="105"];
19 [label="111"];
20 [label="120"];
21 [label="121"];
22 [label="125"];
23 [label="127"];
24 [label="133"];
25 [label="143"];
26 [label="165"];
2 -> 1;
3 -> 1;
5 -> 1;
6 -> 1;
4 -> 2;
7 -> 2;
9 -> 2;
11 -> 2;
7 -> 3;
10 -> 3;
13 -> 3;
8 -> 4;
12 -> 4;
15 -> 4;
9 -> 5;
13 -> 5;
17 -> 5;
11 -> 6;
17 -> 6;
12 -> 7;
16 -> 7;
18 -> 7;
14 -> 8;
19 -> 8;
15 -> 9;
18 -> 9;
22 -> 9;
16 -> 10;
21 -> 10;
22 -> 11;
20 -> 12;
23 -> 12;
18 -> 13;
21 -> 13;
24 -> 14;
19 -> 15;
23 -> 15;
20 -> 16;
25 -> 16;
22 -> 17;
23 -> 18;
25 -> 18;
24 -> 19;
26 -> 20;
25 -> 21;
26 -> 23;
26 -> 25;
}

The Hasse diagram of \(Ap(S, 26)\) is as follows.

NSGraph 1 0 2 22 2->1 3 38 3->1 4 44 4->2 5 45 5->1 6 58 6->1 7 60 7->2 7->3 8 66 8->4 9 67 9->2 9->5 10 76 10->3 11 80 11->2 11->6 12 82 12->4 12->7 13 83 13->3 13->5 14 88 14->8 15 89 15->4 15->9 16 98 16->7 16->10 17 103 17->5 17->6 18 105 18->7 18->9 18->13 19 111 19->8 19->15 20 120 20->12 20->16 21 121 21->10 21->13 22 125 22->9 22->11 22->17 23 127 23->12 23->15 23->18 24 133 24->14 24->19 25 143 25->16 25->18 25->21 26 165 26->20 26->23 26->25

References

Delgado, M., P. A. Garcia-Sanchez, and J. Morais. 2024. NumericalSgps, a Package for Numerical Semigroups, Version 1.4.0.” https://gap-packages.github.io/ numericalsgps.