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Noncommutative Dedekind domains
A ring R is a noncommutative Dedekind domain if it’s:

• a domain: ∀a,b ∈ R \ {0} : ab ̸= 0
• an Asano order: every nonzero (two-sided) ideal I ◁ R is

invertible
• noetherian: left and right ideals of R are finitely

generated

Factorization of two-sided ideals
Two-sided ideals factor in an essentially unique way into a
product of maximal ideals.

• hereditary: left and right ideals of R are projective

Factorization of one-sided ideals
One-sided ideals factor in an ”essentially unique” way into a
product of ”atoms”.
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Examples and non-examples

Examples of Dedekind domains
• every PID (both left and right ideals are principal)

• the first Weyl algebra A1(k) = k⟨x , y | xy − yx = 1⟩
• a polynomial ring D[x ] over a division ring D

Non-examples
• the higher Weyl algebras An(k) = A1(k)⊗ · · · ⊗ A1(k) are

not hereditary for n > 1
• the matrix polynomial ring Mn(D)[x ] over a division ring

is not a domain
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The class group

Inspiration
In commutative setting we have:

I ⊕ J ∼= R ⊕ IJ

We say that I is stably isomorphic to J if
I ⊕ R ∼= J ⊕ R

and write ⟨I⟩ for the set of all ideals that are stably
isomorphic to I.

Steinitz class group
If we define ⟨I⟩+ ⟨J⟩ := ⟨K ⟩ iff ⟨I ⊕ J⟩ = ⟨R ⊕ K ⟩, then

C(R) = {⟨I⟩ | I right R-ideal}

is a group called the Steinitz class group. As in the
commutative case, K0(R) ∼= Z⊕ C(R).
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Mal’cev-Neumann series ring

Let D be a commutative ring, G and ordered group, and
α : G → Aut(D) a homomorphism.

Let R = D((G;α)) be the set of all formal series of the form∑
g∈G

agg,

where the support {g ∈ G | ag ̸= 0} is a well-ordered set.

If we define the addition by components and multiplication
respecting the multiplication in D and G together with the
relation

ga = α(g)(a)g,

the set R becomes a ring called Mal’cev-Neumann series ring.
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Main theorem

Examples
• R = D((Z, α)) is just the standard skew Laurent series

ring D[[x ;σ]][x−1] for σ = α(1)

• Zn can be ordered lexicographically
• the free group Fn can also be ordered

Theorem (D. Smertnig, D. Z. V. 2024)
If D is a Dedekind domain, then so is R = D((G, α)).

Extension Lemma
Every right ideal of R is isomorphic to IR for some I ◁ D.

What is the Steinitz class group of R?
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The Steinitz group
There is an morphism

ϕ : C(D) → C(R)

mapping ⟨I⟩ to ⟨IR⟩.

It is surjective. (This is due to the
extension lemma.)

The kernel of ϕ contains all elements of the form

⟨I⟩ − ⟨α(g)(I)⟩.

Question
Do the above elements generate the kernel?

For R = D[x ;σ][x−1] the answer is positive. Of course in this
case, we consider the map K0(D) → K0(R).
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