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Definitions

Let D be an integral domain with quotient field K .

For each subset E ⊆ K , Int(E ,D) := {f ∈ K [X ] | f (E ) ⊆ D} is
called the ring of D-integer-valued polynomials over E . When
E = D we set Int(D) := Int(D,D).

The polynomial closure (in D) of E is defined as the set

clD(E ) := {x ∈ K | f (x) ∈ D, ∀ f ∈ Int(E ,D)},

clD(E ) is the largest subset of K such that

Int(E ,D) = Int(clD(E ),D)

If E ,F ⊆ K are such that Int(E ,D) = Int(F ,D) we say that they
are polynomially equivalent.
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polynomial closure

A subset E ⊆ K such that Int(E ,D) = Int(D) is said polynomially
dense in D.
For instance Z+, Z− or the union of two coprime ideals in Z are
polynomially dense in Z.

The concept of polynomial closure was introduced by Gilmer
(1989) and McQuillan (1991) in a topological context. For
instance in a Dedekind domain with finite residue fields the
polynomial closure of a subset E is the intersection of its
topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a
star-operation.
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star-operations

Let F(D) be the set of nonzero fractional ideals of D. A
star-operation is a map ∗ : F(D) −→ F(D), I 7→ I ∗ satisfying the
following properties for each a ∈ K\{0} and I , J ∈ F(D):

(∗1) (aD)∗ = aD; (aI )∗ = aI ∗;

(∗2) I ⊆ I ∗;

(∗3) I ⊆ J ⇒ I ∗ ⊆ J∗;

(∗4) (I ∗)∗ = I ∗.
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star-operations

The divisorial closure or v -closure is the map:

I 7→ Iv := (I−1)−1,

where I−1 := {x ∈ K | xI ⊆ D}. We have that I ∗ ⊆ Iv for each
I ∈ F(D) and each star-operation ∗.

The identity is also star operation.

The set Star(D) of star operations on D has a natural order given
by ?1 ≤ ?2 if I ?1 ⊆ I ?2 , for every fractional ideal I . Under this
order, Star(D) is a complete lattice whose minimum is the identity
and whose maximum is the v-operation .
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some considerations about the v -operation

• Every D-homomorphism from I to D can be uniquely extended
to a D-homomorphism from K to K ⇒ identify HomD(I ,D)
with the subset of HomD(K ,K ) mapping I into D

• I−1
ϕ∼= HomD(I ,D) defined by ϕ(a)(x) = ax for all a ∈ I−1

and x ∈ I (thus HomD(I ,D) ∼= I−1X )

• Iv
λ∼= HomD(HomD(I ,D),D) defined by λ(x)(f ) = f (x) for all

x ∈ Iv and f ∈ HomD(I ,D)

• Iv = {x ∈ K | f (x) ∈ D, ∀ f ∈ HomD(I ,D)}
• Iv is the biggest ideal such that HomD(I ,D) = Hom(Iv ,D).

The inclusion I−1X ⊆ Int(I ,D) implies that Iv ⊇ clD(I ).
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the case Int(D) = D[X ]

Represent Int(I ,D) when Int(D) = D[X ]

If Int(D) = D[X ] then Int(I ,D) = ∩a∈I\{0}D[X/a] and so it is the
graded ring:

Int(I ,D) = D ⊕ (
⋂

u∈I\{0}

1

u
D)X ⊕ · · · ⊕ (

⋂
u∈I\{0}

1

un
D)X n ⊕ · · · =

We let I (n) denote the D-module generated by the set
{un | u ∈ I} and so

⋂
u∈I\{0}

1
unD = (D : I (n)) = I (n)−1.
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the ring D[X/I ]

Int(I ,D) =
⊕
n∈N

I (n)−1X n

‖
D[X/I ]

Int(I ,D) ⊇
⊕
n∈N

I (n)−1X n = D[X/I ]

Theorem
Let D be a domain and suppose that Int(D) = D[X ]. If I is a
nonzero fractional ideal of D, then

clD(I ) = {z ∈ K | zn ∈ I (n)v , ∀ n ≥ 0}.
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the operations ?n, ?∞

For any integer n > 0 we can define the operation

?n : F(D) −→ F(D),

I 7−→ {x ∈ K | x t ∈ I (t)v for all t ≤ n}

and we can also define the operation

?∞ : F(D) −→ F(D),

I 7−→
⋂
{I ?n | n ∈ N}

{x ∈ K | xn ∈ I (n)v for all n ∈ N}.

Proposition

The ?n and ?∞ are star operations on D, and

v = ?1 ≥ ?2 ≥ ?3 ≥ · · · ≥ ?∞
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the operations ?n, ?∞

Let D[X/I ]n :=
⊕n

t=0 I (t)−1X t be the set of polynomials of
D[X/I ] of degree at most n.

Proposition

(a) For each n ≥ 1 , I ?n := {z ∈ K | f (z) ∈ D, ∀f ∈ D[X/I ]n};
(b) I ?∞ := {z ∈ K | f (z) ∈ D, ∀f ∈ D[X/I ]}.

Note that since D[X/I ] ⊆ Int(I ,D), then clD ≤ ?∞ and if
Int(D) = D[X ] then ?∞ = clD .

Then we have the chain:

v = ?1 ≥ ?2 ≥ ?3 ≥ · · · ≥ ?∞ ≥ clD
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Corollary

I ?n is the largest set such that D[X/I ]n = D[X/I ?n ]n and I ?∞ is
the largest set such that D[X/I ] = D[X/I ?∞ ].

The above result replicates the fact that the polynomial closure of
E is the largest subset of K such that Int(E ,D) = Int(clD(E ),D)
and Iv is the biggest ideal such that HomD(I ,D) = Hom(Iv ,D).
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essential domain

M.H. Park - F.T in 2005 proved that when D is an essential
domain, then ?∞ = v and in many subcases of essential domains
we have that clD = v .
The key-tool to prove this equality is the fact that for any ideal I
in an essential domain

(�) I (n)v = (I n)v

In fact:

• I ?∞ = Iv ⇔ I (n)v = Iv (n)v (for the maximality of the
v -operation)
• it is known that (I n)v = (I nv )v for any ideal I in any domain D
• if I (n)v = (I n)v , from the above conditions we have that
?∞ = v .

We can obtain the condition (�) when D is integrally closed so
generalizing the result obtained for essential domains.
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integrally closed domain

Theorem
Let D be an integrally closed domain. Then ?∞ = v .

tools

• if I (n)? = (I n)? for a star operation ? then ?∞ = v . Indeed,
for the maximality of the v -operation we have that
I (n)? = (I n)? ⇒ I (n)v = (I n)v .

• we take the b-operation - I b =
⋂
{IV | D ⊆ V ∈ K} - and

show that I (n)b = (I n)b for every ideal I and integer n (it is
enough to show that I (n)V = I nV for all valuation overrings
V ).
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caharacteristic 0

Consider the case Q ⊂ D. This is equivalent to ask that the
residue fields are of characteristic 0 and so Int(D) = D[X ]. Claim

B I (n) = I n

Lemma W
Let X ,Y be indeterminates over Q. For every n, the sets
{X n, (X + 1)n, (X + 2)n, . . . , (X + n)n} and
{X n, (X + Y )n, (X + 2Y )n, . . . , (X + nY )n} are linearly
independent over Q.
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caharacteristic 0

Proposition

Let D be an integral domain with Q ⊆ D and I ∈ F(D). Then,
I (n) = I n for all n ≥ 0.

Sketch of the proof It is enough to show that I · I (n − 1) = I (n)
for all n ≥ 1: indeed, if this equality is true, then
I (n) = I · I (n− 1) = I 2 · I (n− 2) = · · · = I n−1 · I (1) = I n−1 · I = I n.
The containment I (n) ⊆ I · I (n − 1) is obvious.
For the reverse containment, I · I (n − 1) = 〈xyn−1, x , y ∈ I 〉 and
we show that the elements xyn−1 are in I (n) by dimension
considerations based on Lemma W.
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caharacteristic 0

The Proposition above does not hold in general for rings of
characteristic 0 not containing Q. For example, if D = Z[X ,Y ]
and I = (X ,Y ), then XY ∈ I 2 but XY /∈ I (2).

Theorem
Let D be a domain such that D/m has characteristic 0, for each
maximal ideal m. Then ?∞ = clD = v .

The previous result holds for polynomial rings of fields of
characteristic 0 like Q[X ] or R[X ].
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caharacteristic p

v = ?1 ≥ ?2 ≥ ?3 ≥ · · · ≥ ?∞ ≥ clD

In characteristic p it is not always true that all the ?n are equal.

Example Let F ⊆ K ⊆ L be a tower of purely inseparable
extension of degree p, with L = F (y) simple over F . Consider

D := F + XL[[X ]], I := K + XL[[X ]]

then, I ?1 = Iv = L[[X ]]. On the other hand,
I (p) = K (p) + XL[[X ]] = Kp + XL[[X ]] = D, and thus I (p)v = D;
therefore, yp /∈ I (p) since yp /∈ F . It follows that I ?p 6= L[[X ]] and
thus ?p 6= ?1.

The main difference from the previous case is that Lemma W does
not hold (the determinant of the Wronskian matrix in the proof of
the Lemma must be nonzero - it may be equal to a multiple of p).
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caharacteristic p

Proposition

Let D be a ring of characteristic p containing an infinite field. Let
n = t0 + t1p + · · ·+ tkp

k , with 0 ≤ ti < p for every i . Then,

I (n) = I t0 · I (p)t1 · I (p2)t2 · · · I (pk)tk .

Corollary

Let D be a ring of characteristic p containing an infinite field.
Then clD(I ) = I ?∞ = {x ∈ K | xpe ∈ I(pe)v for every e ≥ 0}.

Proposition

Let D be an integral domain and n a positive integer. Suppose
that every element of D has an n-th root in D. We have that if
x ∈ Iv , then xn ∈ I (n)v .
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caharacteristic p

If D has characteristic p we can put some extra hypothesis to get
that clD = ?∞ = v :

(1) D contains an infinite field;

(2) D contains a p − th root of every element a ∈ D.

(1) implies that clD = ?∞ and that I ?∞ = {x ∈ K | xpe ∈ I (pe)v
for every e ≥ 0};

(2) is necessary to prove that if x ∈ Iv , then xp
e ∈ I (pe)v .
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caharacteristic p

Theorem
Let D be an integral domain of characteristic p that contains an
infinite field and such that every element of D has a p-th root in
D. Then, clD = v .

Example Let F be a perfect infinite field, and let L be an algebraic
extension of F . Consider the ring

D :=
⋃
n≥1

(F + X 1/pnL[[X 1/pn ]])

D contains an infinite field (F ) and every element has a p-th root.

Indeed, if x ∈ D then x ∈ F + X 1/pnL[[X 1/pn ]] for some n and we
can write x =

∑
i≥0 aiX

i/pn with a0 ∈ F and ai ∈ L for all i > 0.
Since both F and L are perfect, there are b0 ∈ F and bi ∈ L (for
i > 0) such that bpj = aj for all j . Setting y :=

∑
biX

i/pn+1
, then

y ∈ D and yp = x .
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