Joint Meeting AMS UMI, Palermo 2024

Star operations related to polynomial closure

Francesca Tartarone (joint work with Dario Spirito)

Università degli Studi Roma Tre

July 23^{th} , 2024

Let D be an integral domain with quotient field K.

For each subset $E \subseteq K$, $Int(E, D) := \{f \in K[X] \mid f(E) \subseteq D\}$ is called the *ring of D-integer-valued polynomials over* E. When E = D we set Int(D) := Int(D, D).

The *polynomial closure* (in *D*) of *E* is defined as the set

 $cl_D(E) := \{ x \in K \mid f(x) \in D, \forall f \in Int(E, D) \},\$

 $cl_D(E)$ is the largest subset of K such that

 $\operatorname{Int}(E,D) = \operatorname{Int}(\operatorname{cl}_D(E),D)$

Let D be an integral domain with quotient field K.

For each subset $E \subseteq K$, $Int(E, D) := \{f \in K[X] \mid f(E) \subseteq D\}$ is called the *ring of D-integer-valued polynomials over* E. When E = D we set Int(D) := Int(D, D).

The polynomial closure (in D) of E is defined as the set

 $\operatorname{cl}_D(E) := \{ x \in K \mid f(x) \in D, \forall f \in \operatorname{Int}(E, D) \},\$

 $cl_D(E)$ is the largest subset of K such that

 $\operatorname{Int}(E,D) = \operatorname{Int}(\operatorname{cl}_D(E),D)$

Let D be an integral domain with quotient field K.

For each subset $E \subseteq K$, $Int(E, D) := \{f \in K[X] \mid f(E) \subseteq D\}$ is called the *ring of D-integer-valued polynomials over* E. When E = D we set Int(D) := Int(D, D).

The polynomial closure (in D) of E is defined as the set

 $\operatorname{cl}_D(E) := \{ x \in K \mid f(x) \in D, \forall f \in \operatorname{Int}(E, D) \},\$

 $cl_D(E)$ is the largest subset of K such that

 $\operatorname{Int}(E,D) = \operatorname{Int}(\operatorname{cl}_D(E),D)$

Let D be an integral domain with quotient field K.

For each subset $E \subseteq K$, $Int(E, D) := \{f \in K[X] \mid f(E) \subseteq D\}$ is called the *ring of D-integer-valued polynomials over* E. When E = D we set Int(D) := Int(D, D).

The polynomial closure (in D) of E is defined as the set

 $\operatorname{cl}_D(E) := \{ x \in K \mid f(x) \in D, \forall f \in \operatorname{Int}(E, D) \},\$

 $cl_D(E)$ is the largest subset of K such that

 $\operatorname{Int}(E,D) = \operatorname{Int}(\operatorname{cl}_D(E),D)$

A subset $E \subseteq K$ such that Int(E, D) = Int(D) is said polynomially dense in D.

For instance \mathbb{Z}^+ , \mathbb{Z}^- or the union of two coprime ideals in \mathbb{Z} are polynomially dense in \mathbb{Z} .

The concept of polynomial closure was introduced by Gilmer (1989) and McQuillan (1991) in a topological context. For instance in a Dedekind domain with finite residue fields the polynomial closure of a subset E is the intersection of its topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a star-operation.

A subset $E \subseteq K$ such that Int(E, D) = Int(D) is said polynomially dense in D. For instance \mathbb{Z}^+ , \mathbb{Z}^- or the union of two coprime ideals in \mathbb{Z} are polynomially dense in \mathbb{Z} .

The concept of polynomial closure was introduced by Gilmer (1989) and McQuillan (1991) in a topological context. For instance in a Dedekind domain with finite residue fields the polynomial closure of a subset E is the intersection of its topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a star-operation.

A subset $E \subseteq K$ such that Int(E, D) = Int(D) is said polynomially dense in D. For instance \mathbb{Z}^+ , \mathbb{Z}^- or the union of two coprime ideals in \mathbb{Z} are polynomially dense in \mathbb{Z} .

The concept of polynomial closure was introduced by Gilmer (1989) and McQuillan (1991) in a topological context. For instance in a Dedekind domain with finite residue fields the polynomial closure of a subset E is the intersection of its topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a star-operation.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A subset $E \subseteq K$ such that Int(E, D) = Int(D) is said polynomially dense in D. For instance \mathbb{Z}^+ , \mathbb{Z}^- or the union of two coprime ideals in \mathbb{Z} are polynomially dense in \mathbb{Z} .

The concept of polynomial closure was introduced by Gilmer (1989) and McQuillan (1991) in a topological context. For instance in a Dedekind domain with finite residue fields the polynomial closure of a subset E is the intersection of its topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a star-operation.

Let $\mathfrak{F}(D)$ be the set of nonzero fractional ideals of D. A star-operation is a map $*: \mathfrak{F}(D) \longrightarrow \mathfrak{F}(D), I \mapsto I^*$ satisfying the following properties for each $a \in K \setminus \{0\}$ and $I, J \in \mathfrak{F}(D)$:

$$(*1) (aD)^* = aD; (al)^* = al^*;$$

(*2) $l \subseteq l^*;$
(*3) $l \subseteq J \Rightarrow l^* \subseteq J^*;$
(*4) $(l^*)^* = l^*.$

Let $\mathfrak{F}(D)$ be the set of nonzero fractional ideals of D. A star-operation is a map $*: \mathfrak{F}(D) \longrightarrow \mathfrak{F}(D), I \mapsto I^*$ satisfying the following properties for each $a \in K \setminus \{0\}$ and $I, J \in \mathfrak{F}(D)$:

$$\begin{array}{l} (*1) \ (aD)^* = aD; \ (aI)^* = aI^*; \\ (*2) \ I \subseteq I^*; \\ (*3) \ I \subseteq J \Rightarrow I^* \subseteq J^*; \\ (*4) \ (I^*)^* = I^*. \end{array}$$

The divisorial closure or v-closure is the map:

$$I \mapsto I_{v} := (I^{-1})^{-1},$$

where $I^{-1} := \{x \in K \mid xI \subseteq D\}$. We have that $I^* \subseteq I_v$ for each $I \in \mathfrak{F}(D)$ and each star-operation *.

The identity is also star operation.

The set $\operatorname{Star}(D)$ of star operations on D has a natural order given by $\star_1 \leq \star_2$ if $I^{\star_1} \subseteq I^{\star_2}$, for every fractional ideal I. Under this order, $\operatorname{Star}(D)$ is a complete lattice whose minimum is the identity and whose maximum is the *v*-operation. The divisorial closure or v-closure is the map:

$$I \mapsto I_{v} := (I^{-1})^{-1},$$

where $I^{-1} := \{x \in K \mid xI \subseteq D\}$. We have that $I^* \subseteq I_v$ for each $I \in \mathfrak{F}(D)$ and each star-operation *.

The identity is also star operation.

The set $\operatorname{Star}(D)$ of star operations on D has a natural order given by $\star_1 \leq \star_2$ if $I^{\star_1} \subseteq I^{\star_2}$, for every fractional ideal I. Under this order, $\operatorname{Star}(D)$ is a complete lattice whose minimum is the identity and whose maximum is the *v*-operation.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

some considerations about the v-operation

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ [→] Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_v \cong \operatorname{Hom}_D(\operatorname{Hom}_D(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_v$ and $f \in \operatorname{Hom}_D(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

The inclusion $I^{-1}X \subseteq \text{Int}(I, D)$ implies that $I_v \supseteq \text{cl}_D(I)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ [∞] Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_v \cong \operatorname{Hom}_D(\operatorname{Hom}_D(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_v$ and $f \in \operatorname{Hom}_D(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

The inclusion $I^{-1}X \subseteq \text{Int}(I, D)$ implies that $I_v \supseteq \text{cl}_D(I)$.

・ロト・日本・日本・日本・日本

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ ^φ = Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_v \cong \operatorname{Hom}_D(\operatorname{Hom}_D(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_v$ and $f \in \operatorname{Hom}_D(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ ^φ = Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_{v} \stackrel{\lambda}{\cong} \operatorname{Hom}_{D}(\operatorname{Hom}_{D}(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_{v}$ and $f \in \operatorname{Hom}_{D}(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ ^φ = Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_v \stackrel{\lambda}{\cong} \operatorname{Hom}_D(\operatorname{Hom}_D(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_v$ and $f \in \operatorname{Hom}_D(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ ^φ = Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_{v} \stackrel{\lambda}{\cong} \operatorname{Hom}_{D}(\operatorname{Hom}_{D}(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_{v}$ and $f \in \operatorname{Hom}_{D}(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

- Every D-homomorphism from I to D can be uniquely extended to a D-homomorphism from K to K ⇒ identify Hom_D(I, D) with the subset of Hom_D(K, K) mapping I into D
- *I*⁻¹ ^φ = Hom_D(*I*, *D*) defined by φ(a)(x) = ax for all a ∈ *I*⁻¹ and x ∈ *I* (thus Hom_D(*I*, *D*) ≃ *I*⁻¹X)
- $I_{\nu} \stackrel{\lambda}{\cong} \operatorname{Hom}_{D}(\operatorname{Hom}_{D}(I, D), D)$ defined by $\lambda(x)(f) = f(x)$ for all $x \in I_{\nu}$ and $f \in \operatorname{Hom}_{D}(I, D)$
- $I_v = \{x \in K \mid f(x) \in D, \forall f \in \operatorname{Hom}_D(I, D)\}$
- I_v is the biggest ideal such that $\operatorname{Hom}_D(I, D) = \operatorname{Hom}(I_v, D)$.

Represent Int(I, D) when Int(D) = D[X]

If Int(D) = D[X] then $Int(I, D) = \bigcap_{a \in I \setminus \{0\}} D[X/a]$ and so it is the graded ring:

$$\operatorname{Int}(I,D) = D \oplus (\bigcap_{u \in I \setminus \{0\}} \frac{1}{u} D) X \oplus \cdots \oplus (\bigcap_{u \in I \setminus \{0\}} \frac{1}{u^n} D) X^n \oplus \cdots =$$

A D N A 目 N A E N A E N A B N A C N

We let I(n) denote the *D*-module generated by the set $\{u^n \mid u \in I\}$ and so $\bigcap_{u \in I \setminus \{0\}} \frac{1}{u^n} D = (D : I(n)) = I(n)^{-1}$.

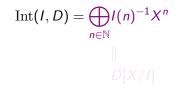
Represent Int(I, D) when Int(D) = D[X]

If Int(D) = D[X] then $Int(I, D) = \bigcap_{a \in I \setminus \{0\}} D[X/a]$ and so it is the graded ring:

$$\operatorname{Int}(I,D) = D \oplus (\bigcap_{u \in I \setminus \{0\}} \frac{1}{u} D) X \oplus \cdots \oplus (\bigcap_{u \in I \setminus \{0\}} \frac{1}{u^n} D) X^n \oplus \cdots =$$

A D N A 目 N A E N A E N A B N A C N

We let I(n) denote the *D*-module generated by the set $\{u^n \mid u \in I\}$ and so $\bigcap_{u \in I \setminus \{0\}} \frac{1}{u^n} D = (D : I(n)) = I(n)^{-1}$.



$$\operatorname{Int}(I,D) \supseteq \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^n = D[X/I]$$

Theorem

Let D be a domain and suppose that Int(D) = D[X]. If I is a nonzero fractional ideal of D, then

 $\operatorname{cl}_D(I) = \{ z \in K \mid z^n \in I(n)_v, \, \forall \, n \geq 0 \}.$

$$\operatorname{Int}(I, D) = \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^{n}$$
$$\parallel D[X/I]$$

$$\operatorname{Int}(I,D) \supseteq \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^n = D[X/I]$$

Theorem

Let D be a domain and suppose that Int(D) = D[X]. If I is a nonzero fractional ideal of D, then

 $\operatorname{cl}_D(I) = \{ z \in K \mid z^n \in I(n)_v, \, \forall \, n \geq 0 \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\operatorname{Int}(I, D) = \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^{n}$$
$$\parallel$$
$$D[X/I]$$

$$\operatorname{Int}(I,D) \supseteq \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^n = D[X/I]$$

Theorem

Let D be a domain and suppose that Int(D) = D[X]. If I is a nonzero fractional ideal of D, then

 $\mathrm{cl}_D(I) = \{ z \in K \mid z^n \in I(n)_v, \, \forall \, n \ge 0 \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\operatorname{Int}(I, D) = \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^n$$
$$\parallel D[X/I]$$

$$\operatorname{Int}(I,D) \supseteq \bigoplus_{n \in \mathbb{N}} I(n)^{-1} X^n = D[X/I]$$

Theorem

Let D be a domain and suppose that Int(D) = D[X]. If I is a nonzero fractional ideal of D, then

$$\operatorname{cl}_D(I) = \{ z \in K \mid z^n \in I(n)_v, \forall n \ge 0 \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

For any integer n > 0 we can define the operation

$$\begin{aligned} \star_n \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \{ x \in K \mid x^t \in I(t)_v \text{ for all } t \leq n \} \end{aligned}$$

and we can also define the operation

$$\begin{aligned} \star_{\infty} \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \bigcap \{ I^{\star_n} \mid n \in \mathbb{N} \} \\ \{ x \in K \mid x^n \in I(n)_v \text{ for all } n \in \mathbb{N} \}. \end{aligned}$$

Proposition

The \star_n and \star_∞ are star operations on D, and

$$v = \star_1 \ge \star_2 \ge \star_3 \ge \cdots \ge \star_\infty$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For any integer n > 0 we can define the operation

$$\begin{aligned} \star_n \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \{ x \in K \mid x^t \in I(t)_v \text{ for all } t \leq n \} \end{aligned}$$

and we can also define the operation

$$\begin{aligned} \star_{\infty} \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \bigcap \{ I^{\star_n} \mid n \in \mathbb{N} \} \\ \{ x \in \mathcal{K} \mid x^n \in I(n)_{\nu} \text{ for all } n \in \mathbb{N} \}. \end{aligned}$$

Proposition

The \star_n and \star_∞ are star operations on D, and

$$v = \star_1 \ge \star_2 \ge \star_3 \ge \cdots \ge \star_\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For any integer n > 0 we can define the operation

$$\begin{aligned} \star_n \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \{ x \in K \mid x^t \in I(t)_v \text{ for all } t \leq n \} \end{aligned}$$

and we can also define the operation

$$\begin{aligned} \star_{\infty} \colon \mathfrak{F}(D) &\longrightarrow \mathfrak{F}(D), \\ I &\longmapsto \bigcap \{ I^{\star_n} \mid n \in \mathbb{N} \} \\ \{ x \in \mathcal{K} \mid x^n \in I(n)_{\nu} \text{ for all } n \in \mathbb{N} \}. \end{aligned}$$

Proposition

The \star_n and \star_∞ are star operations on D, and

$$v = \star_1 \geq \star_2 \geq \star_3 \geq \cdots \geq \star_\infty$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let $D[X/I]_n := \bigoplus_{t=0}^n I(t)^{-1}X^t$ be the set of polynomials of D[X/I] of degree at most n.

Proposition

(a) For each $n \ge 1$, $I^{*_n} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]_n\};$ (b) $I^{*_{\infty}} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]\}.$

Note that since $D[X/I] \subseteq \text{Int}(I, D)$, then $cl_D \leq \star_{\infty}$ and if Int(D) = D[X] then $\star_{\infty} = cl_D$.

Then we have the chain:

$$\mathsf{v} = \star_1 \ge \star_2 \ge \star_3 \ge \cdots \ge \star_\infty \ge \mathrm{cl}_D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $D[X/I]_n := \bigoplus_{t=0}^n I(t)^{-1}X^t$ be the set of polynomials of D[X/I] of degree at most n.

Proposition

(a) For each $n \ge 1$, $I^{\star_n} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]_n\};$ (b) $I^{\star_\infty} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]\}.$

Note that since $D[X/I] \subseteq \text{Int}(I, D)$, then $cl_D \leq \star_{\infty}$ and if Int(D) = D[X] then $\star_{\infty} = cl_D$.

Then we have the chain:

$$v = \star_1 \ge \star_2 \ge \star_3 \ge \cdots \ge \star_\infty \ge \operatorname{cl}_D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $D[X/I]_n := \bigoplus_{t=0}^n I(t)^{-1}X^t$ be the set of polynomials of D[X/I] of degree at most n.

Proposition

(a) For each $n \ge 1$, $I^{\star_n} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]_n\};$ (b) $I^{\star_\infty} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]\}.$

Note that since $D[X/I] \subseteq \text{Int}(I, D)$, then $cl_D \leq \star_{\infty}$ and if Int(D) = D[X] then $\star_{\infty} = cl_D$.

Then we have the chain:

$$\mathsf{v}=\star_1\geq\star_2\geq\star_3\geq\cdots\geq\star_\infty\geq\mathrm{cl}_D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $D[X/I]_n := \bigoplus_{t=0}^n I(t)^{-1}X^t$ be the set of polynomials of D[X/I] of degree at most n.

Proposition

(a) For each $n \ge 1$, $I^{\star_n} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]_n\};$ (b) $I^{\star_\infty} := \{z \in K \mid f(z) \in D, \forall f \in D[X/I]\}.$

Note that since $D[X/I] \subseteq \text{Int}(I, D)$, then $cl_D \leq \star_{\infty}$ and if Int(D) = D[X] then $\star_{\infty} = cl_D$.

Then we have the chain:

$$v = \star_1 \ge \star_2 \ge \star_3 \ge \cdots \ge \star_\infty \ge \operatorname{cl}_D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary

 I^{\star_n} is the largest set such that $D[X/I]_n = D[X/I^{\star_n}]_n$ and I^{\star_∞} is the largest set such that $D[X/I] = D[X/I^{\star_\infty}]$.

The above result replicates the fact that the polynomial closure of E is the largest subset of K such that $Int(E, D) = Int(cl_D(E), D)$ and I_v is the biggest ideal such that $Hom_D(I, D) = Hom(I_v, D)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

 I^{\star_n} is the largest set such that $D[X/I]_n = D[X/I^{\star_n}]_n$ and I^{\star_∞} is the largest set such that $D[X/I] = D[X/I^{\star_\infty}]$.

The above result replicates the fact that the polynomial closure of E is the largest subset of K such that $Int(E, D) = Int(cl_D(E), D)$ and I_v is the biggest ideal such that $Hom_D(I, D) = Hom(I_v, D)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

essential domain

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal *I* in an essential domain

 $(\diamond) \quad I(n)_{v} = (I^{n})_{v}$

In fact:

- *I*^{*∞} = *I*_v ⇔ *I*(*n*)_v = *I*_v(*n*)_v (for the maximality of the v-operation)
- it is known that $(I^n)_v = (I^n_v)_v$ for any ideal I in any domain D
- if $l(n)_v = (l^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when D is integrally closed so generalizing the result obtained for essential domains, $_{++}$, $_{++}$, $_{+-}$

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal I in an essential domain

 $(\diamond) \quad I(n)_{v} = (I^{n})_{v}$

In fact:

- *I*^{*∞} = *I*_v ⇔ *I*(*n*)_v = *I*_v(*n*)_v (for the maximality of the v-operation)
- it is known that $(I^n)_v = (I^n_v)_v$ for any ideal I in any domain D
- if $I(n)_v = (I^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when D is integrally closed so generalizing the result obtained for essential domains, (z, b, b, b, c) = 0

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal I in an essential domain

 $(\diamond) \quad I(n)_v = (I^n)_v$

In fact:

- $I^{\star\infty} = I_{\nu} \Leftrightarrow I(n)_{\nu} = I_{\nu}(n)_{\nu}$ (for the maximality of the *v*-operation)
- it is known that $(I^n)_{v}=(I^n_{v})_{v}$ for any ideal I in any domain D
- if $l(n)_v = (l^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when D is integrally closed so generalizing the result obtained for essential damains, a_{Ξ} , a_{Ξ}

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal I in an essential domain

 $(\diamond) \quad I(n)_{v} = (I^{n})_{v}$

In fact:

- $I^{\star\infty} = I_{\nu} \Leftrightarrow I(n)_{\nu} = I_{\nu}(n)_{\nu}$ (for the maximality of the *v*-operation)
- it is known that $(I^n)_v = (I^n_v)_v$ for any ideal I in any domain D
- if $I(n)_v = (I^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when D is integrally closed so generalizing the result obtained for essential damains, $(a_{\pm}, a_{\pm}, a_{\pm$

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal I in an essential domain

 $(\diamond) \quad I(n)_{v} = (I^{n})_{v}$

In fact:

- $I^{\star\infty} = I_{\nu} \Leftrightarrow I(n)_{\nu} = I_{\nu}(n)_{\nu}$ (for the maximality of the *v*-operation)
- it is known that $(I^n)_v = (I^n_v)_v$ for any ideal I in any domain D
- if $l(n)_v = (l^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when D is integrally closed so generalizing the result obtained for essential damains, $(a_{\pm}, a_{\pm}, a_{\pm$

M.H. Park - F.T in 2005 proved that when D is an essential domain, then $\star_{\infty} = v$ and in many subcases of essential domains we have that $cl_D = v$.

The key-tool to prove this equality is the fact that for any ideal I in an essential domain

 $(\diamond) \quad I(n)_{v} = (I^{n})_{v}$

In fact:

- $I^{\star\infty} = I_{\nu} \Leftrightarrow I(n)_{\nu} = I_{\nu}(n)_{\nu}$ (for the maximality of the *v*-operation)
- it is known that $(I^n)_v = (I^n_v)_v$ for any ideal I in any domain D
- if $l(n)_v = (l^n)_v$, from the above conditions we have that $\star_{\infty} = v$.

We can obtain the condition (\diamond) when *D* is integrally closed so generalizing the result obtained for essential domains, (a = b + b = b)

integrally closed domain

Theorem

Let D be an integrally closed domain. Then $\star_{\infty} = v$.

tools

- if l(n)* = (lⁿ)* for a star operation * then *∞ = v . Indeed, for the maximality of the v-operation we have that l(n)* = (lⁿ)* ⇒ l(n)_v = (lⁿ)_v.
- we take the b-operation I^b = ∩{IV | D ⊆ V ∈ K} and show that I(n)^b = (Iⁿ)^b for every ideal I and integer n (it is enough to show that I(n)V = IⁿV for all valuation overrings V).

Theorem

Let *D* be an integrally closed domain. Then $\star_{\infty} = v$.

tools

- if $I(n)^* = (I^n)^*$ for a star operation * then $*_{\infty} = v$. Indeed, for the maximality of the *v*-operation we have that $I(n)^* = (I^n)^* \Rightarrow I(n)_v = (I^n)_v$.
- we take the b-operation I^b = ∩{IV | D ⊆ V ∈ K} and show that I(n)^b = (Iⁿ)^b for every ideal I and integer n (it is enough to show that I(n)V = IⁿV for all valuation overrings V).

Theorem

Let D be an integrally closed domain. Then $\star_{\infty} = v$.

tools

- if *l(n)*^{*} = (*lⁿ*)^{*} for a star operation * then *_∞ = *v*. Indeed, for the maximality of the *v*-operation we have that *l(n)*^{*} = (*lⁿ*)^{*} ⇒ *l(n)_v* = (*lⁿ)_v*.
- we take the b-operation I^b = ∩{IV | D ⊆ V ∈ K} and show that I(n)^b = (Iⁿ)^b for every ideal I and integer n (it is enough to show that I(n)V = IⁿV for all valuation overrings V).

Consider the case $\mathbb{Q} \subset D$. This is equivalent to ask that the residue fields are of characteristic 0 and so Int(D) = D[X]. Claim

 $arphi \quad I(n) = I^n$

Lemma W Let X, Y be indeterminates over \mathbb{Q} . For every *n*, the sets $\{X^n, (X+1)^n, (X+2)^n, \dots, (X+n)^n\}$ and $\{X^n, (X+Y)^n, (X+2Y)^n, \dots, (X+nY)^n\}$ are linearly independent over \mathbb{Q} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Consider the case $\mathbb{Q} \subset D$. This is equivalent to ask that the residue fields are of characteristic 0 and so Int(D) = D[X]. Claim

 \triangleright $I(n) = I^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma W Let X, Y be indeterminates over \mathbb{Q} . For every *n*, the sets $\{X^n, (X+1)^n, (X+2)^n, \dots, (X+n)^n\}$ and $\{X^n, (X+Y)^n, (X+2Y)^n, \dots, (X+nY)^n\}$ are linearly independent over \mathbb{Q} . Consider the case $\mathbb{Q} \subset D$. This is equivalent to ask that the residue fields are of characteristic 0 and so Int(D) = D[X]. Claim

 \triangleright $I(n) = I^n$

Lemma W Let X, Y be indeterminates over \mathbb{Q} . For every *n*, the sets $\{X^n, (X+1)^n, (X+2)^n, \dots, (X+n)^n\}$ and $\{X^n, (X+Y)^n, (X+2Y)^n, \dots, (X+nY)^n\}$ are linearly independent over \mathbb{Q} .

Let D be an integral domain with $\mathbb{Q} \subseteq D$ and $I \in \mathfrak{F}(D)$. Then, $I(n) = I^n$ for all $n \geq 0$.

Sketch of the proof It is enough to show that $I \cdot I(n-1) = I(n)$ for all $n \ge 1$: indeed, if this equality is true, then $I(n) = I \cdot I(n-1) = I^2 \cdot I(n-2) = \cdots = I^{n-1} \cdot I(1) = I^{n-1} \cdot I = I^n$. The containment $I(n) \subseteq I \cdot I(n-1)$ is obvious. For the reverse containment, $I \cdot I(n-1) = \langle xy^{n-1}, x, y \in I \rangle$ and we show that the elements xy^{n-1} are in I(n) by dimension considerations based on Lemma W.

Let D be an integral domain with $\mathbb{Q} \subseteq D$ and $I \in \mathfrak{F}(D)$. Then, $I(n) = I^n$ for all $n \ge 0$.

Sketch of the proof It is enough to show that $I \cdot I(n-1) = I(n)$ for all $n \ge 1$: indeed, if this equality is true, then $I(n) = I \cdot I(n-1) = I^2 \cdot I(n-2) = \cdots = I^{n-1} \cdot I(1) = I^{n-1} \cdot I = I^n$. The containment $I(n) \subseteq I \cdot I(n-1)$ is obvious. For the reverse containment, $I \cdot I(n-1) = \langle xy^{n-1}, x, y \in I \rangle$ and we show that the elements xy^{n-1} are in I(n) by dimension considerations based on Lemma W.

Let D be an integral domain with $\mathbb{Q} \subseteq D$ and $I \in \mathfrak{F}(D)$. Then, $I(n) = I^n$ for all $n \ge 0$.

Sketch of the proof It is enough to show that $I \cdot I(n-1) = I(n)$ for all $n \ge 1$: indeed, if this equality is true, then $I(n) = I \cdot I(n-1) = I^2 \cdot I(n-2) = \cdots = I^{n-1} \cdot I(1) = I^{n-1} \cdot I = I^n$. The containment $I(n) \subseteq I \cdot I(n-1)$ is obvious. For the reverse containment, $I \cdot I(n-1) = \langle xy^{n-1}, x, y \in I \rangle$ and

we show that the elements xy^{n-1} are in I(n) by dimension considerations based on Lemma W.

Let D be an integral domain with $\mathbb{Q} \subseteq D$ and $I \in \mathfrak{F}(D)$. Then, $I(n) = I^n$ for all $n \geq 0$.

Sketch of the proof It is enough to show that $I \cdot I(n-1) = I(n)$ for all $n \ge 1$: indeed, if this equality is true, then $I(n) = I \cdot I(n-1) = I^2 \cdot I(n-2) = \cdots = I^{n-1} \cdot I(1) = I^{n-1} \cdot I = I^n$. The containment $I(n) \subseteq I \cdot I(n-1)$ is obvious. For the reverse containment, $I \cdot I(n-1) = \langle xy^{n-1}, x, y \in I \rangle$ and we show that the elements xy^{n-1} are in I(n) by dimension considerations based on Lemma W.

The Proposition above does not hold in general for rings of characteristic 0 not containing \mathbb{Q} . For example, if $D = \mathbb{Z}[X, Y]$ and I = (X, Y), then $XY \in I^2$ but $XY \notin I(2)$.

Theorem

Let *D* be a domain such that D/\mathfrak{m} has characteristic 0, for each maximal ideal \mathfrak{m} . Then $\star_{\infty} = cl_D = v$.

The previous result holds for polynomial rings of fields of characteristic 0 like $\mathbb{Q}[X]$ or $\mathbb{R}[X]$.

The Proposition above does not hold in general for rings of characteristic 0 not containing \mathbb{Q} . For example, if $D = \mathbb{Z}[X, Y]$ and I = (X, Y), then $XY \in I^2$ but $XY \notin I(2)$.

Theorem

Let D be a domain such that D/\mathfrak{m} has characteristic 0, for each maximal ideal \mathfrak{m} . Then $\star_{\infty} = cl_D = v$.

The previous result holds for polynomial rings of fields of characteristic 0 like $\mathbb{Q}[X]$ or $\mathbb{R}[X]$.

The Proposition above does not hold in general for rings of characteristic 0 not containing \mathbb{Q} . For example, if $D = \mathbb{Z}[X, Y]$ and I = (X, Y), then $XY \in I^2$ but $XY \notin I(2)$.

Theorem

Let D be a domain such that D/\mathfrak{m} has characteristic 0, for each maximal ideal \mathfrak{m} . Then $\star_{\infty} = cl_D = v$.

The previous result holds for polynomial rings of fields of characteristic 0 like $\mathbb{Q}[X]$ or $\mathbb{R}[X]$.

$\mathbf{v} = \star_1 \geq \star_2 \geq \star_3 \geq \cdots \geq \star_{\infty} \geq \mathrm{cl}_D$

In characteristic p it is not always true that all the \star_n are equal.

Example Let $F \subseteq K \subseteq L$ be a tower of purely inseparable extension of degree p, with L = F(y) simple over F. Consider

 $D := F + XL[[X]], \quad I := K + XL[[X]]$

then, $I^{*_1} = I_v = L[[X]]$. On the other hand, $I(p) = K(p) + XL[[X]] = K^p + XL[[X]] = D$, and thus $I(p)_v = D$; therefore, $y^p \notin I(p)$ since $y^p \notin F$. It follows that $I^{*_p} \neq L[[X]]$ and thus $*_p \neq *_1$.

The main difference from the previous case is that Lemma W does not hold (the determinant of the Wronskian matrix in the proof of the Lemma must be nonzero - it may be equal to a multiple of p_{2}^{1}

$$\mathbf{v} = \star_1 \geq \star_2 \geq \star_3 \geq \cdots \geq \star_{\infty} \geq \mathrm{cl}_D$$

In characteristic p it is not always true that all the \star_n are equal.

Example Let $F \subseteq K \subseteq L$ be a tower of purely inseparable extension of degree p, with L = F(y) simple over F. Consider

 $D := F + XL[[X]], \quad I := K + XL[[X]]$

then, $I^{*_1} = I_v = L[[X]]$. On the other hand, $I(p) = K(p) + XL[[X]] = K^p + XL[[X]] = D$, and thus $I(p)_v = D$; therefore, $y^p \notin I(p)$ since $y^p \notin F$. It follows that $I^{*_p} \neq L[[X]]$ and thus $*_p \neq *_1$.

The main difference from the previous case is that Lemma W does not hold (the determinant of the Wronskian matrix in the proof of the Lemma must be nonzero - it may be equal to a multiple of p_{\perp}

$$\mathbf{v} = \star_1 \geq \star_2 \geq \star_3 \geq \cdots \geq \star_{\infty} \geq \mathrm{cl}_D$$

In characteristic p it is not always true that all the \star_n are equal.

Example Let $F \subseteq K \subseteq L$ be a tower of purely inseparable extension of degree p, with L = F(y) simple over F. Consider

$$D := F + XL[[X]], \quad I := K + XL[[X]]$$

then, $I^{\star_1} = I_v = L[[X]]$. On the other hand, $I(p) = K(p) + XL[[X]] = K^p + XL[[X]] = D$, and thus $I(p)_v = D$; therefore, $y^p \notin I(p)$ since $y^p \notin F$. It follows that $I^{\star_p} \neq L[[X]]$ and thus $\star_p \neq \star_1$.

The main difference from the previous case is that Lemma W does not hold (the determinant of the Wronskian matrix in the proof of the Lemma must be nonzero - it may be equal to a multiple of p_{\pm}

$$\mathbf{v} = \star_1 \geq \star_2 \geq \star_3 \geq \cdots \geq \star_{\infty} \geq \mathrm{cl}_D$$

In characteristic p it is not always true that all the \star_n are equal.

Example Let $F \subseteq K \subseteq L$ be a tower of purely inseparable extension of degree p, with L = F(y) simple over F. Consider

$$D := F + XL[[X]], \quad I := K + XL[[X]]$$

then, $I^{\star_1} = I_v = L[[X]]$. On the other hand, $I(p) = K(p) + XL[[X]] = K^p + XL[[X]] = D$, and thus $I(p)_v = D$; therefore, $y^p \notin I(p)$ since $y^p \notin F$. It follows that $I^{\star_p} \neq L[[X]]$ and thus $\star_p \neq \star_1$.

The main difference from the previous case is that Lemma W does not hold (the determinant of the Wronskian matrix in the proof of the Lemma must be nonzero - it may be equal to a multiple of p).

Let *D* be a ring of characteristic *p* containing an infinite field. Let $n = t_0 + t_1p + \cdots + t_kp^k$, with $0 \le t_i < p$ for every *i*. Then,

$$I(n) = I^{t_0} \cdot I(p)^{t_1} \cdot I(p^2)^{t_2} \cdots I(p^k)^{t_k}.$$

Corollary

Let *D* be a ring of characteristic *p* containing an infinite field. Then $cl_D(I) = I^{*\infty} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\}.$

Proposition

Let *D* be an integral domain and *n* a positive integer. Suppose that every element of *D* has an *n*-th root in *D*. We have that if $x \in I_v$, then $x^n \in I(n)_v$.

・ロット (雪) ・ (日) ・ (日) ・ (日)

Let *D* be a ring of characteristic *p* containing an infinite field. Let $n = t_0 + t_1 p + \cdots + t_k p^k$, with $0 \le t_i < p$ for every *i*. Then,

$$I(n) = I^{t_0} \cdot I(p)^{t_1} \cdot I(p^2)^{t_2} \cdots I(p^k)^{t_k}.$$

Corollary

Let *D* be a ring of characteristic *p* containing an infinite field. Then $cl_D(I) = I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\}.$

Proposition

Let *D* be an integral domain and *n* a positive integer. Suppose that every element of *D* has an *n*-th root in *D*. We have that if $x \in I_v$, then $x^n \in I(n)_v$.

Let *D* be a ring of characteristic *p* containing an infinite field. Let $n = t_0 + t_1 p + \cdots + t_k p^k$, with $0 \le t_i < p$ for every *i*. Then,

$$I(n) = I^{t_0} \cdot I(p)^{t_1} \cdot I(p^2)^{t_2} \cdots I(p^k)^{t_k}.$$

Corollary

Let *D* be a ring of characteristic *p* containing an infinite field. Then $cl_D(I) = I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\}.$

Proposition

Let *D* be an integral domain and *n* a positive integer. Suppose that every element of *D* has an *n*-th root in *D*. We have that if $x \in I_v$, then $x^n \in I(n)_v$.

(1) D contains an infinite field;

(2) D contains a p - th root of every element $a \in D$.

(1) implies that $cl_D = \star_{\infty}$ and that $I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\};$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (1) D contains an infinite field;
- (2) *D* contains a p th root of every element $a \in D$.

(1) implies that $cl_D = \star_{\infty}$ and that $I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\};$

- (1) D contains an infinite field;
- (2) D contains a p th root of every element $a \in D$.

(1) implies that $cl_D = \star_{\infty}$ and that $I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\};$

- (1) D contains an infinite field;
- (2) D contains a p th root of every element $a \in D$.

(1) implies that $cl_D = \star_{\infty}$ and that $I^{\star_{\infty}} = \{x \in K \mid x^{p^e} \in I(p^e)_v \text{ for every } e \ge 0\};$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let *D* be an integral domain of characteristic *p* that contains an infinite field and such that every element of *D* has a *p*-th root in *D*. Then, $cl_D = v$.

Example Let F be a perfect infinite field, and let L be an algebraic extension of F. Consider the ring

$$D := \bigcup_{n \ge 1} (F + X^{1/p^n} L[[X^{1/p^n}]])$$

D contains an infinite field (*F*) and every element has a *p*-th root. Indeed, if $x \in D$ then $x \in F + X^{1/p^n} L[[X^{1/p^n}]]$ for some *n* and we can write $x = \sum_{i\geq 0} a_i X^{i/p^n}$ with $a_0 \in F$ and $a_i \in L$ for all i > 0. Since both *F* and *L* are perfect, there are $b_0 \in F$ and $b_i \in L$ (for i > 0) such that $b_j^p = a_j$ for all *j*. Setting $y := \sum b_i X^{i/p^{n+1}}$, then $y \in D$ and $y^p = x$.

Theorem

Let D be an integral domain of characteristic p that contains an infinite field and such that every element of D has a p-th root in D. Then, $cl_D = v$.

Example Let F be a perfect infinite field, and let L be an algebraic extension of F. Consider the ring

$$D := \bigcup_{n \ge 1} (F + X^{1/p^n} L[[X^{1/p^n}]])$$

D contains an infinite field (F) and every element has a p-th root. Indeed, if $x \in D$ then $x \in F + X^{1/p^n} L[[X^{1/p^n}]]$ for some *n* and we can write $x = \sum_{i>0} a_i X^{i/p^n}$ with $a_0 \in F$ and $a_i \in L$ for all i > 0. Since both *F* and *L* are perfect, there are $b_0 \in F$ and $b_i \in L$ (for i > 0) such that $b_i^p = a_j$ for all j. Setting $y := \sum b_i X^{i/p^{n+1}}$, then $y \in D$ and $y^p = x$. ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some papers

- **D.L. McQuillan**, *On a theorem of R. Gilmer*, J. Number Theory 39 (1991), 245–250.
- P.-J. Cahen, *Polynomial closure*, J. Number Theory **61** (2) (1996), 226–247.
- S. Frisch, Substitution and closure of sets under integer-valued polynomials, J. Number Theory 33 (1996), 396–403.
- M. Fontana, L. Izelgue, S. Kabbaj, F.T., *Polynomial closure in essential domains and pullbacks*, Advances in Commutative Ring theory, Lecture Notes Pure Appl. Math., Marcel Dekker, 205 (2000), 307–321.
- Mi Hee Park, F.T., Polynomial closure in essential domains, Manuscripta Math., 117(1) (2005), 29–41.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ