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called the ring of D-integer-valued polynomials over E. When
E = D we set Int(D) := Int(D, D).

The polynomial closure (in D) of E is defined as the set

cp(E) :={x e K| f(x) e D,V f € Int(E, D)},

clp(E) is the largest subset of K such that
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If E,F C K are such that Int(E, D) = Int(F, D) we say that they
are polynomially equivalent.
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A subset E C K such that Int(E, D) = Int(D) is said polynomially
dense in D.

For instance Z™, Z~ or the union of two coprime ideals in Z are
polynomially dense in Z.

The concept of polynomial closure was introduced by Gilmer
(1989) and McQuillan (1991) in a topological context. For
instance in a Dedekind domain with finite residue fields the
polynomial closure of a subset E is the intersection of its
topological closures in every maximal ideal-adic topology.

Successively, the polynomial closure of ideals was studied as a
star-operation.
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star-operations

The divisorial closure or v-closure is the map:
N (e
where |71 := {x € K | xI C D}. We have that /* C I, for each
| € §(D) and each star-operation .
The identity is also star operation.

The set Star(D) of star operations on D has a natural order given
by x1 < %5 if ["* C [*2, for every fractional ideal /. Under this
order, Star(D) is a complete lattice whose minimum is the identity
and whose maximum is the v-operation .
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some considerations about the v-operation

® Every D-homomorphism from I to D can be uniquely extended
to a D-homomorphism from K to K = identify Homp(/, D)
with the subset of Homp (K, K) mapping / into D

©
® /71 = Homp(/, D) defined by (a)(x) = ax for all a € [~}
and x € [ (thus Homp(/,D) = [71X)

e I, 2 Homp(Homp(/, D), D) defined by A(x)(f) = £(x) for al
x € l, and f € Homp(/, D)

e |,={xeK|f(x)e D,V feHomp(l,D)}

e |, is the biggest ideal such that Homp(/, D) = Hom(/,, D).

The inclusion /=1 X C Int(/, D) implies that /, 2 clp(/).
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Represent Int(/, D) when Int(D) = D[X]

If Int(D) = D[X] then Int(/, D) = N,cp\ {0y D[X/a] and so it is the
graded ring:

1 1
mt(/,D)=D&( (| -D)Xe —a( (]| D)X &=
uel\{0} Y uel\{0} Y

We let /(n) denote the D-module generated by the set
{u" | u €I} and so (,ep (o0 LD=(D:1I(n))=1(n)".
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the ring D[X/I]

Int(/, D) @/ )"1x"
neN

|
Dix/1

Int(/, D) 2 @ I(n) ' X" = D[X/I]
neN

Theorem
Let D be a domain and suppose that Int(D) = D[X]. If I is a
nonzero fractional ideal of D, then

cp(l)y={ze K| z" € I(n),, Vn>0}.
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the operations x,, %o

For any integer n > 0 we can define the operation

*n: §(D) — F(D),
I — {x € K|x"€l(t), forall t < n}

and we can also define the operation

*0o: §(D) — F(D),
I— (J{I* | n e N}
{x € K| x" € I(n), for all n € N}.

Proposition
The %, and %, are star operations on D, and

V=K1 2> k) 2 k3 2> 2 koo
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Let D[X /1], := D7_y I(t) 1 X" be the set of polynomials of
D[X/I] of degree at most n.

Proposition
(a) Foreachn>1, " :={ze K| f(z) € D, Yf € D[X/I],};

(b) I*>:={ze K| f(z) e D, ¥Yf € D[X/I]}.
Note that since D[X//] C Int(/, D), then clp < % and if
Int(D) = D[X] then %o = clp.

Then we have the chain:
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Corollary
I*7 is the largest set such that D[X/I], = D[X/I*"], and [*>~ is
the largest set such that D[X/I] = D[X/I*=].

The above result replicates the fact that the polynomial closure of
E is the largest subset of K such that Int(E, D) = Int(clp(E), D)
and I, is the biggest ideal such that Homp(/, D) = Hom(/,, D).
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M.H. Park - F.T in 2005 proved that when D is an essential
domain, then x5, = v and in many subcases of essential domains
we have that clp = v.
The key-tool to prove this equality is the fact that for any ideal /
in an essential domain

In fact:
o [*~ =, < [(n), = I,(n), (for the maximality of the
v-operation)
® it is known that (/"), = (/7), for any ideal / in any domain D
e if I(n), = (I"), , from the above conditions we have that
*oo = V.

We can obtain the condition (¢) when D is integrally closed so
generalizing the result obtained for essential domains.
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integrally closed domain

Theorem
Let D be an integrally closed domain. Then %, = v.

tools

e if /(n)* = (I")* for a star operation % then *», = v . Indeed,
for the maximality of the v-operation we have that
I(n)* = (") = 1(n)y = (I")v.

® we take the b-operation - /> =N{IV | D C V € K} - and
show that /(n)? = (I")? for every ideal / and integer n (it is
enough to show that /(n)V = I"V for all valuation overrings
V).



caharacteristic 0

Consider the case Q C D. This is equivalent to ask that the
residue fields are of characteristic 0 and so Int(D) = D[X].



caharacteristic 0

Consider the case Q C D. This is equivalent to ask that the
residue fields are of characteristic 0 and so Int(D) = D[X]. Claim

> I(n)=1"



caharacteristic 0

Consider the case Q C D. This is equivalent to ask that the
residue fields are of characteristic 0 and so Int(D) = D[X]. Claim

> I(n)=1"

Lemma W

Let X, Y be indeterminates over Q. For every n, the sets
{X"(X+1)" (X+2)",...,(X+n)"} and
{X"(X+Y)",(X+2Y)", ...,(X+ nY)"} are linearly
independent over QQ.
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Proposition
Let D be an integral domain with Q C D and I € §(D). Then,
I(n) = I" for all n > 0.

Sketch of the proof It is enough to show that /- /(n — 1) = I(n)
for all n > 1: indeed, if this equality is true, then
I(n)=1-1(n=1)=12-1(n=2)=--- =" (1) =I""1. 1 ="
The containment /(n) C [ - /(n— 1) is obvious.

For the reverse containment, /- I(n—1) = (xy"~*, x,y € /) and
we show that the elements xy"~! are in /(n) by dimension
considerations based on Lemma W.

1



caharacteristic 0

The Proposition above does not hold in general for rings of
characteristic 0 not containing Q. For example, if D = Z[X, Y]
and I = (X, Y), then XY € I but XY ¢ I(2).



caharacteristic 0

The Proposition above does not hold in general for rings of
characteristic 0 not containing Q. For example, if D = Z[X, Y]
and I = (X, Y), then XY € I but XY ¢ I(2).

Theorem
Let D be a domain such that D/m has characteristic 0, for each
maximal ideal m. Then x,, = clp = v.
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The Proposition above does not hold in general for rings of
characteristic 0 not containing Q. For example, if D = Z[X, Y]
and I = (X, Y), then XY € I but XY ¢ I(2).

Theorem
Let D be a domain such that D/m has characteristic 0, for each
maximal ideal m. Then x,, = clp = v.

The previous result holds for polynomial rings of fields of
characteristic 0 like Q[X] or R[X].



caharacteristic p

V=ok] > kp > k3 > s > koo > Clp

In characteristic p it is not always true that all the x, are equal.

Example Let F C K C L be a tower of purely inseparable
extension of degree p, with L = F(y) simple over F. Consider

then, /"t = |, = L[[X]]. On the other hand,

I(p) = K(p) + XL[[X]] = KP + XL[[X]] = D, and thus I(p), = D;
therefore, yP ¢ I(p) since yP ¢ F. It follows that /*» #£ L[[X]] and
thus %, # *1.
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V=% >k > *3 >t > koo > Clp

In characteristic p it is not always true that all the %, are equal.

Example Let F C K C L be a tower of purely inseparable
extension of degree p, with L = F(y) simple over F. Consider

D:=F+XL[X]], |:=K+XL[X]]

then, I** = [, = L[[X]]. On the other hand,

I(p) = K(p) + XL[[X]] = KP + XL[[X]] = D, and thus /(p), = D;
therefore, yP ¢ I(p) since yP ¢ F. It follows that /*» # L[[X]] and
thus %, # *1.

The main difference from the previous case is that Lemma W does
not hold (the determinant of the Wronskian matrix in the proof of
the Lemma must be nonzero - it may be equal to a multiple of p).
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Proposition
Let D be a ring of characteristic p containing an infinite field. Let
n=ty+tip+---+ txpX, with 0 < t; < p for every i. Then,

I(n) = 1% 1(p)™* - 1(p?)%2 -~ 1(p)™.

Corollary

Let D be a ring of characteristic p containing an infinite field.
Then clp(/) = I** = {x € K | x*" € I(p®), for every e > 0}.

Proposition

Let D be an integral domain and n a positive integer. Suppose
that every element of D has an n-th root in D. We have that if
x € Iy, then x" € I(n),.
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caharacteristic p

If D has characteristic p we can put some extra hypothesis to get
that clp = x5 = v

(1) D contains an infinite field;

(2) D contains a p — th root of every element a € D.

(1) implies that clp = %o and that /*> = {x € K | xP° € I(p®),
for every e > 0};

(2) is necessary to prove that if x € I,, then xP° € I(p®),.
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caharacteristic p

Theorem
Let D be an integral domain of characteristic p that contains an

infinite field and such that every element of D has a p-th root in
D. Then, clp = v.

Example Let F be a perfect infinite field, and let L be an algebraic
extension of F. Consider the ring

D= J(F+ XHLIXTI)

D contains an infinite field (F) and every element has a p-th root.

Indeed, if x € D then x € F + XY/P"L[[X'/P"]] for some n and we
can write x = >0 a;.X"/P" with ag € F and a; € L for all i > 0.
Since both F and L are perfect, there are by € F and b; € L (for
i > 0) such that bj’.’ = aj for all j. Setting y := ) b:X/P"™" then
y € D and yP = x.
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