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The monoid of zero-sum sequences, aka the block
monoid, B(G0)

Let (G,+,0) be a (finite) abelian group. Let G0 ⊂ G. A
sequence S over G0 is an element of F(G0) the free abelian
monoid with basis G0.
Thus a sequences is a (formal, commutative) product

S =
l∏

i=1

gi =
∏

g∈G0

gvg(S).

The sequence S is called a zero-sum sequence if its sum

σ(S) =
l∑

i=1

gi =
∑

g∈G0

vg(S)g ∈ G

equals 0.
The monoid of zero-sum sequences over G0 is defined as

B(G0) = {S ∈ F(G0) : σ(S) = 0}.
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Study the arithmetic: sets of lengths

A monoid H (commutative, cancellative), for example the
multiplicative monoid of a domain, is called atomic if each
non-zero element a is the product (of finitely many) irreducible
elements.
If

a = a1 . . . an

with irreducible ai , then n is called a length of a.

L(a) = {n : n is a length }.

For a invertible set L(a) = {0}.
The system of sets of lengths is

L(H) = {L(a) : a ∈ H}.

If all sets of lengths are singletons, the structure is called
half-factorial (Zaks, 1976).
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Applications of monoids of zero-sum sequences

Various monoids and domains of interest admit a
transfer-homorphism to monoids of zero-sum sequences (or
other auxiliary monoids). They preserve sets of lengths.
For a Krull monoid H sets of lengths just depend on the class
group C(H) = G and the set G0 of classes containing primes
(the distribution of prime v -ideals).
More precisely, there exists a transfer homorphism (the block
homomorphism)

β : H → B(G0)

such that
LH(a) = LB(G0)(β(a))

for each a ∈ H.
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Sets of distances

For A ⊆ Z, we denote by ∆(A) the set of (successive) distances
of A, that is the set of all d ∈ N for which there exists ` ∈ A such
that A ∩ [`, `+ d ] = {`, `+ d}. Clearly, ∆(A) ⊆ {d} if and only if
A is an arithmetical progression with difference d .
For a monoid H we set ∆(H) =

⋃
a∈H ∆(L(a)) the set of

distances.
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Sets of differences, or minimal distances

Let ∆∗(H) = {min ∆(H ′) : H ′ ⊂ H divisor-closed, and not HF}
the set of minmal distances.
Introduced by Gao and Geroldinger (2000).
A main motivation is that in case the Structure Theorem of Sets
of Lengths holds, that is sets of lengths are almost arithmetical
multiprogressions with globally bounded parameters, this set
(usually) gives the sets of differences for these arithmetic
progressions.
There is some M ∈ N0 such that each set of lengths L of H is
an almost arithmetical multiprogression with bound M and
difference d ∈ ∆∗(H) ∪ {0}, that is,

L = y + (L1 ∪ L∗ ∪ (max L∗ + L2)) ⊆ y +D + dZ

with y ∈ N0, {0,d} ⊆ D ⊆ [0,d ], −L1,L2 ⊆ [1,M], min L∗ = 0
and L∗ = [0,max L∗] ∩ D + dZ.
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Goal of the talk

Results on
∆∗(H) = {min ∆(H ′) : H ′ ⊂ H divisor-closed, and not HF} the
set of minmal distances for monoids of weigthed zero-sum
sequences.
A fundamental lemma It is known that min ∆(H) = gcd ∆(H).
(Geroldinger)
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Weighted zero-sum sequences

Let (G,+,0) be a (finite) abelian group. Let G0 ⊂ G. Let Ω be
“a set of weights.” Let S =

∏l
i=1 gi be a sequence.

Then any elements of the form

l∑
i=1

ωigi

with ωi ∈ Ω is called an Ω-weighted sum of S.
What do we take as set of weights?

1. Subset of the integers, or of {0,1, . . . , exp(G)− 1}.
2. Subset of the endomorphisms of End(G) (more general).

Let σΩ(S) denote the set of all elements that are an Ω-weighted
sum of S.
We say that S is a Ω-weighted zero-sum sequence if 0 ∈ σΩ(S).
Note: The sequences is not ‘weighted’, the sum is.
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Weighted zero-sum sequences, II

BΩ(G) = {S ∈ F(G) : 0 ∈ σΩ(S)} ⊂ F(G)

be the set of all sequences that have zero as a Ω-weighted
sum.
BΩ(G) is a submonoid of F(G).
Moreover B(G) ⊂ BΩ(G).
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Motivation

Let K denote a Galois number field. Let OK denote its ring of
algebraic integers.
Let N : O∗K → N denote the absolute norm.
Then N(O∗K ) is a submonoid of (N∗, ·). We want to study the
arithmetic of that monoid.

Theorem (Boukheche, Merito, Ordaz, S.)

Let K be a Galois number field with Galois group Γ and class
group G. There is a transfer homomorphism from N(O∗K ), the
monoid of absolute norms of non-zero algebraic integers of K ,
to BΓ(G), the monoid of Γ-weighted zero-sum sequences over
the class group of K .

Recall that the Galois group acts on the class group; thus it
makes sense to talk about Γ-weighted zero-sum sequences
over the class group of K .
Further developed by Geroldinger, Halter-Koch, Zhong. Earlier
considerations by Coykendall.
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Motivation II

Weighted zero-sum sequences are linked to coding theory.
See talks in the “Algebraic coding theory” section (tomorrow
afternoon)
I “The geometry of intersecting codes: bounds and

constructions” (by M. Borello)
I “Intersecting codes and their applications to additive

combinatorics and factorization theory” (by M. Scotti)
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The (ir-)reducible elements of BΩ(G)

A non-empty/non-invertible S ∈ BΩ(G) is reducible if there are
two non-empty elements S1,S2 ∈ BΩ(G) such that S = S1S2.
That is, S can be decomposed into two non-empty Ω-weighted
zero-sum sequences S1 and S2.
That is, S = S1S2 with 0 ∈ σΩ(S1) and 0 ∈ σΩ(S2).
Note: Contrary to the case without weights, it does not suffice
that there exist some proper divisor S1 of S with 0 ∈ σΩ(S1),
because 0 + a = 0 implies a = 0, but 0 ∈ A1 and 0 ∈ A1 + A2
does not imply 0 ∈ A2.
We denote by A(BΩ(G)) the set of irreducible Ω-weighted
zero-sum sequences.
These monoids are usually not Krull, but are C-monoids. (A
submonoid of a free monoids is a C-monoid if its [reduced]
class semigroup is finite.)
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A non-empty/non-invertible S ∈ BΩ(G) is reducible if there are
two non-empty elements S1,S2 ∈ BΩ(G) such that S = S1S2.
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Further results on BΩ(G)

It is not hard to see that BΩ(G) is finitely generated.
This has immediate arithmetic consequences. In particular the
Structure Theorem for Sets of Lengths holds, this means that
the sets of lengths are almost arithmetical multiprogressions
with globaly bounded parameters.
We want to study ∆∗(BΩ(G)). Let us focus on the case ±
weights.
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What are the divisor-closed submonoids?
These are, as without weights, B±(G0) for G0 ⊂ G.
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A result for groups of odd order

Theorem (Merito, Ordaz, S.)

If |G| odd then max ∆∗(B±(G)) = exp(G)− 2.

For comparison max ∆∗(B(G)) = max{exp(G)− 2, r(G)− 1}
(Geroldinger, Zhong), but that’s much harder to prove.
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A simple lemma

Lemma
Let A ∈ A(B±(G)) and A 6= 0. Then {2, |A|} ⊂ L(A2).

Proof: Let A = g1 . . . gk . Then

A2 = g2
1 · g2

2 . . . g
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is a factorization as 0 = (+1)gi + (−1)gi .
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Another simple lemma

Lemma
Assume that the order of g is odd, then gord(g) ∈ A(B±(G)).

Proof: While g2 is an atom we cannot factor gord(g) into copies
of g2,
since ord(g) is odd.
Basically the same situation as for the (numerical) semigroup
〈2, ord(g)〉.
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Somewhat stronger version of the result

Theorem
Let G be a finite abelian group exponent n and let H = B±(G).
Assume that n ≥ 3 is odd. Let D1 = {d − 2 : d | n ,d ≥ 3} and
let D2 = {d ′ | d : d ∈ D1}. Then D1 ⊆ ∆∗(H) ⊆ D2. In
particular, max ∆∗(H) = n − 2.



A consequence

Corollary

Let p be a prime such that p − 2 is prime. Then for G = Cr
p one

has ∆∗(B±(G)) = {1,p − 2}. In particular, for p = 3 one has
∆∗(B±(G)) = {1}.

Note: This also holds for elementary p-groups of infinite rank.
Note without weights ∆∗(B(G)) = N for infinite G (Chapman,
S., Smith) while ∆∗(B±(G)) = {1} for G = C(N)

3
Nevertheless, by a result of Geroldinger and Kainrath we know
that ‘every’ set is a set of length for B±(G) for infinite G.
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What about the case of even exponent?

Basic construction

Lemma
Let G be a finite abelian group and let e1, . . . ,er be
independent elements of even order, say ord(ei) = 2mi .
Assume that m1 + · · ·+ mr ≥ 2. Let e0 = m1e1 + · · ·+ mr er ,
G0 = {e0,e1, . . . ,er} and H = B±(G0). Then
∆(H) = {m1 + · · ·+ mr − 1}.

Proof: A = e0em1
1 . . . emr

r is an atom. The only other atoms are
e2

i . So L(A2) = {2, |A|}.
Note that m1 + · · ·+ mr − 1 can significantly exceed exp(G)− 2
and r(G).
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Curious link

Lemma
Let G be a finite abelian group and let e1, . . . ,er be
independent elements of even order, say ord(ei) = 2mi .
Assume that m1 + · · ·+ mr ≥ 2. Let e0 = m1e1 + · · ·+ mr er ,
G0 = {e0,e1, . . . ,er} and G∗0 = −G0 ∪G0 and H = B(G∗0).
Then m1 + · · ·+ mr − 1 ∈ ∆(H).

This is a standard lower bound for max ∆(B(G)). In various
cases this should actually be max ∆(B(G)) (possibly
often/always, unless exp(G)− 2 is larger).



Characterization of groups by sets of lengths

Let G1 and G2 be finite abelian groups. Suppose that
L(B±(G1)) = L(B±(G2)). Is it true that G1 and G2 are
isomorphic?
This problem was studied a lot without weights.
Obvioulsy C1 and C2 is a counter example.
Moreover, C3,C4,C2

2 is also a counter-example as they all give
the same system of sets of lengths for B±(G) (by a result of
Fabsits, Geroldinger, Reinhart, Zhong). Specifically, the system
of sets of lengths is {y + 2k + [0, k ] : y , k ∈ N0}.
However, they showed if L(B±(G)) = L(B±(Cn)) for n ≥ 5 then
indeed G ' C5.
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Characterization of groups by sets of lengths, II

Let us consider groups of exponent 3.
Our resuls on ∆∗H imply, for G a finite abelian group and
H = B±(G), one has max ∆∗(H) = 1 if and only if exp(G) = 3 or
G = C2

2 or G = C4.
Now for C3,C4,C2

2 we get the same system of sets of lengths.
However, if L(B±(G)) = L(B±(Cr

3)) for r ≥ 2 then indeed
G ' Cr

3.
Proof: it suffices to recall that ρ(B±(Cr

3)) = (1 + 2r)/2.
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