On the arithmetic of the monoid of plus-minus weighted zero-sum sequences

Andreas Reinhart

University of Graz Department of mathematics and scientific computing

July 24, 2024

This talk is based on a joint work with Florin Fabsits, Alfred Geroldinger and Qinghai Zhong

Der Wissenschaftsfonds.

Andreas Reinhart

On the arithmetic of plus-minus zero-sum sequences

Table of contents

Introduction and terminology

2 Weighted zero-sum sequences and general results

3 Two specific problems

Basic definitions

In this talk all monoids are commutative and cancellative. Let H always be a monoid and let K be a quotient group of H.

Basic definitions

In this talk all monoids are commutative and cancellative. Let H always be a monoid and let K be a quotient group of H.

Let $\mathcal{A}(H)$ be the **set of atoms** of H. Let H^{\times} be the **unit group** of H.

Basic definitions

In this talk all monoids are commutative and cancellative. Let H always be a monoid and let K be a quotient group of H.

Let $\mathcal{A}(H)$ be the **set of atoms** of H. Let H^{\times} be the **unit group** of H.

Set
$$H_{red} = H/H^{\times}$$
, set $Z(H) = \mathcal{F}(\mathcal{A}(H_{red}))$, and let $\pi : Z(H) \to H_{red}$ be the factorization homomorphism

Basic definitions

In this talk all monoids are commutative and cancellative. Let H always be a monoid and let K be a quotient group of H.

Let $\mathcal{A}(H)$ be the **set of atoms** of H. Let H^{\times} be the **unit group** of H.

Set $H_{red} = H/H^{\times}$, set $Z(H) = \mathcal{F}(\mathcal{A}(H_{red}))$, and let $\pi : Z(H) \to H_{red}$ be the factorization homomorphism.

For each $z \in Z(H)$, let |z| be the **length** of z.

Various types of closures

Let $H' = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^k \in H \text{ for each } k \in \mathbb{N}_{\geq n}\}$, called the **seminormal closure** of H.

Various types of closures

Let $H' = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^k \in H \text{ for each } k \in \mathbb{N}_{\geq n}\}$, called the **seminormal closure** of H.

Let $\widetilde{H} = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^n \in H\}$, called the **root closure** of H.

Various types of closures

Let $H' = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^k \in H \text{ for each } k \in \mathbb{N}_{\geq n}\}$, called the **seminormal closure** of H.

Let $H = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^n \in H\}$, called the **root closure** of H.

Let $\widehat{H} = \{z \in K : \text{there is some } c \in H \text{ such that } cz^n \in H \text{ for all } n \in \mathbb{N}\}$, called the **complete integral closure** of *H*.

Various types of closures

Let $H' = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^k \in H \text{ for each } k \in \mathbb{N}_{\geq n}\}$, called the **seminormal closure** of H.

Let $\widetilde{H} = \{z \in K : \text{there is } n \in \mathbb{N} \text{ such that } z^n \in H\}$, called the **root closure** of H.

Let $\widehat{H} = \{z \in K : \text{there is some } c \in H \text{ such that } cz^n \in H \text{ for all } n \in \mathbb{N}\}$, called the **complete integral closure** of *H*.

Observe that $H' \subseteq \widetilde{H} \subseteq \widehat{H}$. Also, H is called **seminormal** (root closed, completely integrally closed) if H = H' $(H = \widetilde{H}, H = \widehat{H})$.

Finitely generated/Mori/Krull monoids

For each $X \subseteq K$, set $(H : X) = \{z \in K : zX \subseteq H\}$ and $X_v = (H : (H : X))$, called the *v*-closure of X. If $X \subseteq H$ is such that $X_v = X$, then X is called a **divisorial ideal** of H.

Finitely generated/Mori/Krull monoids

For each $X \subseteq K$, set $(H:X) = \{z \in K : zX \subseteq H\}$ and $X_v = (H:(H:X))$, called the *v*-closure of X. If $X \subseteq H$ is such that $X_v = X$, then X is called a **divisorial ideal** of H.

We say that *H* is **finitely generated** if there exists a finite subset $E \subseteq H$ such that every element of *H* is a finite product of elements of *E*.

Finitely generated/Mori/Krull monoids

For each $X \subseteq K$, set $(H : X) = \{z \in K : zX \subseteq H\}$ and $X_v = (H : (H : X))$, called the *v*-closure of X. If $X \subseteq H$ is such that $X_v = X$, then X is called a **divisorial ideal** of H.

We say that *H* is **finitely generated** if there exists a finite subset $E \subseteq H$ such that every element of *H* is a finite product of elements of *E*.

Furthermore, H is called a **Mori** monoid if H satisfies the ACC on divisorial ideals and H is called a **Krull** monoid if H is a completely integrally closed Mori monoid.

Finitely generated/Mori/Krull monoids

For each $X \subseteq K$, set $(H : X) = \{z \in K : zX \subseteq H\}$ and $X_v = (H : (H : X))$, called the *v*-closure of X. If $X \subseteq H$ is such that $X_v = X$, then X is called a **divisorial ideal** of H.

We say that *H* is **finitely generated** if there exists a finite subset $E \subseteq H$ such that every element of *H* is a finite product of elements of *E*.

Furthermore, H is called a **Mori** monoid if H satisfies the ACC on divisorial ideals and H is called a **Krull** monoid if H is a completely integrally closed Mori monoid.

If *H* is a finitely generated monoid, then *H* is a Mori monoid, $(H:\widehat{H}) \neq \emptyset$ and $\widehat{H} = \widetilde{H}$ is a Krull monoid. Let $C_{\nu}(H)$ denote the **divisor class group** of *H*.

Sets of lengths and more

For each $a \in H$ set $Z(a) = \pi^{-1}(aH^{\times})$, $L(a) = \{|z| : z \in Z(a)\}$ and $\Delta(a) = \{\ell - k : \ell, k \in L(a), k < \ell, L(a) \cap [k, \ell] = \{k, \ell\}\}.$

Sets of lengths and more

For each $a \in H$ set $Z(a) = \pi^{-1}(aH^{\times})$, $L(a) = \{|z| : z \in Z(a)\}$ and $\Delta(a) = \{\ell - k : \ell, k \in L(a), k < \ell, L(a) \cap [k, \ell] = \{k, \ell\}\}.$

We set $\Delta(H) = \bigcup_{a \in H} \Delta(a)$, called the **set of distances** of *H*. We set $\mathcal{L}(H) = \{L(a) : a \in H\}$, called the **system of sets of lengths** of *H*.

Sets of lengths and more

For each $a \in H$ set $Z(a) = \pi^{-1}(aH^{\times})$, $L(a) = \{|z| : z \in Z(a)\}$ and $\Delta(a) = \{\ell - k : \ell, k \in L(a), k < \ell, L(a) \cap [k, \ell] = \{k, \ell\}\}.$

We set $\Delta(H) = \bigcup_{a \in H} \Delta(a)$, called the **set of distances** of *H*. We set $\mathcal{L}(H) = \{L(a) : a \in H\}$, called the **system of sets of lengths** of *H*.

We say that H is (half-)factorial if Z(a) (resp. L(a)) is a singleton for each $a \in H$.

Sets of lengths and more

For each $a \in H$ set $Z(a) = \pi^{-1}(aH^{\times})$, $L(a) = \{|z| : z \in Z(a)\}$ and $\Delta(a) = \{\ell - k : \ell, k \in L(a), k < \ell, L(a) \cap [k, \ell] = \{k, \ell\}\}.$

We set $\Delta(H) = \bigcup_{a \in H} \Delta(a)$, called the **set of distances** of *H*. We set $\mathcal{L}(H) = \{L(a) : a \in H\}$, called the **system of sets of lengths** of *H*.

We say that *H* is (half-)factorial if Z(a) (resp. L(a)) is a singleton for each $a \in H$.

Furthermore, H is said to be a **BF-monoid** if L(a) is finite and nonempty for each $a \in H$ and H is called an **FF-monoid** if Z(a) is finite and nonempty for each $a \in H$.

C-monoids

Let M be a monoid and let $H \subseteq M$ be a submonoid. Two elements $x, y \in M$ are called (H, M)-equivalent (denoted by $x \sim y$) if $x^{-1}H \cap M = y^{-1}H \cap M$.

C-monoids

Let M be a monoid and let $H \subseteq M$ be a submonoid. Two elements $x, y \in M$ are called (H, M)-equivalent (denoted by $x \sim y$) if $x^{-1}H \cap M = y^{-1}H \cap M$.

Note that \sim is an equivalence relation on M. For each $x \in M$, let $[x]_{\sim}$ be the equivalence class of x. Set $C^*(H, M) = \{[z]_{\sim} : z \in (M \setminus M^{\times}) \cup \{1\}\}.$

C-monoids

Let M be a monoid and let $H \subseteq M$ be a submonoid. Two elements $x, y \in M$ are called (H, M)-equivalent (denoted by $x \sim y$) if $x^{-1}H \cap M = y^{-1}H \cap M$.

Note that \sim is an equivalence relation on M. For each $x \in M$, let $[x]_{\sim}$ be the equivalence class of x. Set $C^*(H, M) = \{[z]_{\sim} : z \in (M \setminus M^{\times}) \cup \{1\}\}.$

Let *F* be a factorial monoid and let $H \subseteq F$ be a submonoid. We say that *H* is a **C-monoid defined in** *F* if $F^{\times} \cap H = H^{\times}$ and $\mathcal{C}^{*}(H, F)$ is finite. Moreover, *H* is a **C-monoid** if it is a C-monoid defined in some factorial monoid.

C-monoids

Let M be a monoid and let $H \subseteq M$ be a submonoid. Two elements $x, y \in M$ are called (H, M)-equivalent (denoted by $x \sim y$) if $x^{-1}H \cap M = y^{-1}H \cap M$.

Note that \sim is an equivalence relation on M. For each $x \in M$, let $[x]_{\sim}$ be the equivalence class of x. Set $C^*(H, M) = \{[z]_{\sim} : z \in (M \setminus M^{\times}) \cup \{1\}\}.$

Let *F* be a factorial monoid and let $H \subseteq F$ be a submonoid. We say that *H* is a **C-monoid defined in** *F* if $F^{\times} \cap H = H^{\times}$ and $\mathcal{C}^*(H, F)$ is finite. Moreover, *H* is a **C-monoid** if it is a C-monoid defined in some factorial monoid.

If *H* is a C-monoid, then *H* is a Mori monoid, $(H : \hat{H}) \neq \emptyset$, \hat{H} is a Krull monoid and $C_{\nu}(\hat{H})$ is finite.

Some homomorphisms

Let *B* be a monoid and let $\varphi : H \to B$ be a monoid homomorphism.

・ロト ・回ト ・ヨト ・ヨト

э

Some homomorphisms

Let *B* be a monoid and let $\varphi : H \to B$ be a monoid homomorphism.

We say that $\varphi : H \to B$ is a **transfer homomorphism** if $B = \varphi(H)B^{\times}$, $\varphi^{-1}(B^{\times}) = H^{\times}$ and for all $a \in H$ and $b, c \in B$ with $\varphi(a) = bc$, there are some $b', c' \in H$ and $\beta, \gamma \in B^{\times}$ such that $b = \varphi(b')\beta$, $c = \varphi(c')\gamma$ and a = b'c'.

Some homomorphisms

Let *B* be a monoid and let $\varphi : H \to B$ be a monoid homomorphism.

We say that $\varphi : H \to B$ is a **transfer homomorphism** if $B = \varphi(H)B^{\times}$, $\varphi^{-1}(B^{\times}) = H^{\times}$ and for all $a \in H$ and $b, c \in B$ with $\varphi(a) = bc$, there are some $b', c' \in H$ and $\beta, \gamma \in B^{\times}$ such that $b = \varphi(b')\beta$, $c = \varphi(c')\gamma$ and a = b'c'.

Moreover, φ is said to be a **divisor homomorphism**, if for all $a, b \in H$, $a \mid b$ if and only if $\varphi(a) \mid \varphi(b)$.

Some homomorphisms

Let *B* be a monoid and let $\varphi : H \to B$ be a monoid homomorphism.

We say that $\varphi : H \to B$ is a **transfer homomorphism** if $B = \varphi(H)B^{\times}$, $\varphi^{-1}(B^{\times}) = H^{\times}$ and for all $a \in H$ and $b, c \in B$ with $\varphi(a) = bc$, there are some $b', c' \in H$ and $\beta, \gamma \in B^{\times}$ such that $b = \varphi(b')\beta$, $c = \varphi(c')\gamma$ and a = b'c'.

Moreover, φ is said to be a **divisor homomorphism**, if for all $a, b \in H$, $a \mid b$ if and only if $\varphi(a) \mid \varphi(b)$.

Now let *B* be a free abelian monoid with basis *P* and let φ be a divisor homomorphism. Then φ is called a **divisor theory** if for each $p \in P$, there is some finite $E \subseteq H$ such that $p = \text{gcd}(\varphi(E))$.

Transfer Krull monoids

Note that H is a Krull monoid if and only if there exists a factorial monoid F and a divisor homomorphism $\varphi : H \to F$. Moreover, H is a Krull monoid if and only if there is a free abelian monoid B and a divisor theory $\psi : H \to B$.

Transfer Krull monoids

Note that H is a Krull monoid if and only if there exists a factorial monoid F and a divisor homomorphism $\varphi : H \to F$. Moreover, H is a Krull monoid if and only if there is a free abelian monoid B and a divisor theory $\psi : H \to B$.

We say that *H* is **transfer Krull** if there exists a Krull monoid *M* and a transfer homomorphism $\psi : H \to M$.

Clearly, every Krull monoid is transfer Krull. Also note that every half-factorial monoid is transfer Krull.

Monoids of (weighted) zero-sum sequences

Let *G* be an abelian group, let $\Gamma \subseteq \text{End}(G)$ and let $\mathcal{F}(G)$ be the free abelian monoid with basis *G*. Set $\mathcal{B}_{\Gamma}(G) = \{\prod_{i=1}^{n} x_i \in \mathcal{F}(G) : \sum_{i=1}^{n} \gamma_i(x_i) = 0 \text{ for some } (\gamma_i)_{i=1}^n \in \Gamma^{[1,n]}\}$, called the **monoid of** Γ -weighted zero-sum sequences over *G*.

Monoids of (weighted) zero-sum sequences

Let *G* be an abelian group, let $\Gamma \subseteq \text{End}(G)$ and let $\mathcal{F}(G)$ be the free abelian monoid with basis *G*. Set $\mathcal{B}_{\Gamma}(G) = \{\prod_{i=1}^{n} x_i \in \mathcal{F}(G) : \sum_{i=1}^{n} \gamma_i(x_i) = 0 \text{ for some } (\gamma_i)_{i=1}^n \in \Gamma^{[1,n]}\}$, called the **monoid of** Γ -weighted zero-sum sequences over *G*.

Observe that $\mathcal{B}_{\Gamma}(G)$ is both an FF-monoid and a BF-monoid.

Monoids of (weighted) zero-sum sequences

Let *G* be an abelian group, let $\Gamma \subseteq \text{End}(G)$ and let $\mathcal{F}(G)$ be the free abelian monoid with basis *G*. Set $\mathcal{B}_{\Gamma}(G) = \{\prod_{i=1}^{n} x_i \in \mathcal{F}(G) : \sum_{i=1}^{n} \gamma_i(x_i) = 0 \text{ for some } (\gamma_i)_{i=1}^n \in \Gamma^{[1,n]}\}$, called the **monoid of** Γ -weighted zero-sum sequences over *G*.

Observe that $\mathcal{B}_{\Gamma}(G)$ is both an FF-monoid and a BF-monoid.

Set $\mathcal{B}(G) = \mathcal{B}_{\{id\}}(G)$, called the monoid of zero-sum sequences over G and set $\mathcal{B}_{\pm}(G) = \mathcal{B}_{\{id,-id\}}(G)$, called the monoid of plus-minus weighted zero-sum sequences over G.

A classical result

Theorem

Let K be an algebraic number field, let \mathcal{O}_K be the ring of algebraic integers in K, let G be the class group of \mathcal{O}_K and let $M = \mathcal{O}_K \setminus \{0\}$ be the monoid of nonzero elements of \mathcal{O}_K . Then there exists a transfer homomorphism $\theta : M \to \mathcal{B}(G)$.

A classical result

Theorem

Let K be an algebraic number field, let \mathcal{O}_K be the ring of algebraic integers in K, let G be the class group of \mathcal{O}_K and let $M = \mathcal{O}_K \setminus \{0\}$ be the monoid of nonzero elements of \mathcal{O}_K . Then there exists a transfer homomorphism $\theta : M \to \mathcal{B}(G)$.

Next we want to point out that a similar type of connection can be established involving monoids of weighted zero-sum sequences.

An important motivation

Theorem (Boukheche, Merito, Ordaz, Schmid, 2022)

Let K/\mathbb{Q} be a finite Galois extension, let \mathcal{O}_K be the ring of algebraic integers in K, let G be the class group of \mathcal{O}_K and let Γ be the Galois group of K/\mathbb{Q} . Let $N : K \to \mathbb{Q}$ be the norm map and let $N(\mathcal{H}_K) = \{|N(a)| : a \in \mathcal{O}_K \setminus \{0\}\}$ be the norm monoid. Then there exists a transfer homomorphism $\theta : N(\mathcal{H}_K) \to \mathcal{B}_{\Gamma}(G)$.

ヘロト ヘヨト ヘヨト ヘヨト

Elementary results

Proposition (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be an abelian group. (1) If |G| < 2, then

$$\mathcal{B}(G) = \mathcal{B}_{\pm}(G) \cong \mathcal{F}(G) \cong (\mathbb{N}_0^{|G|}, +).$$

(2) The following statements are equivalent.
(a) |G| ≤ 2.
(b) B_±(G) is factorial.
(c) B₊(G) is half-factorial.

On the root closure

Proposition (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be an abelian group.

(1)
$$\widetilde{\mathcal{B}}_{\pm}(\widetilde{G}) = \widehat{\mathcal{B}}_{\pm}(\widetilde{G})$$
 is a Krull monoid.

(2) If $|G| \neq 2$, then the inclusion $\mathcal{B}_{\pm}(G) \hookrightarrow \mathcal{F}(G)$ is a divisor theory.

On the Mori property

Theorem (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be an abelian group. Then the following statements are equivalent.

(a)
$$\mathcal{B}_{\pm}(G)$$
 is a Mori monoid.

(b)
$$(\mathcal{B}_{\pm}(G) : \widehat{\mathcal{B}_{\pm}(G)}) \neq \emptyset.$$

(c) 2G is finite.

(d) $G = G_1 \oplus G_2$, where G_1 is an elementary 2-group and G_2 is a finite group.

If these equivalent conditions are satisfied, then $\mathcal{B}_{\pm}(G)$ is seminormal if and only if $\exp(G) \mid 4$.

Rediscovering some facts

Corollary (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be an abelian group. Then the following statements are equivalent.

(a)
$$\mathcal{B}_{\pm}(G)$$
 is a Krull monoid.

(b)
$$\mathcal{B}_{\pm}(G)$$
 is completely integrally closed.

(c)
$$\mathcal{B}_{\pm}(G)$$
 is root closed.

(d)
$$\mathcal{B}_{\pm}(G)$$
 is a transfer Krull monoid.

On C-monoids and finitely generated monoids

Theorem (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be an abelian group. Then the following statements are equivalent.

- (a) $\mathcal{B}_{\pm}(G)$ is finitely generated.
- (b) $\mathcal{B}_{\pm}(G)$ is a C-monoid defined in $\mathcal{F}(G)$.
- (c) $\mathcal{B}_{\pm}(G)$ is a C-monoid.
- (d) $\mathcal{B}_{\pm}(G)$ is a Mori monoid and $\mathcal{C}_{\nu}(\widehat{\mathcal{B}_{\pm}(G)})$ is finitely generated.
- (e) *G* is finite.

The isomorphism problem I

Theorem

Let G_1 and G_2 be abelian groups. Then $\mathcal{B}(G_1)$ and $\mathcal{B}(G_2)$ are isomorphic if and only if G_1 and G_2 are isomorphic.

The isomorphism problem I

Theorem

Let G_1 and G_2 be abelian groups. Then $\mathcal{B}(G_1)$ and $\mathcal{B}(G_2)$ are isomorphic if and only if G_1 and G_2 are isomorphic.

Let G_1 and G_2 be abelian groups. Clearly, if G_1 and G_2 are isomorphic, then $\mathcal{B}_{\pm}(G_1)$ and $\mathcal{B}_{\pm}(G_2)$ are isomorphic. This motivates the **isomorphism problem for plus-minus** weighted zero-sum sequences:

Let $\mathcal{B}_{\pm}(G_1)$ and $\mathcal{B}_{\pm}(G_2)$ be isomorphic. Under what circumstances are G_1 and G_2 isomorphic?

The isomorphism problem I

Theorem

Let G_1 and G_2 be abelian groups. Then $\mathcal{B}(G_1)$ and $\mathcal{B}(G_2)$ are isomorphic if and only if G_1 and G_2 are isomorphic.

Let G_1 and G_2 be abelian groups. Clearly, if G_1 and G_2 are isomorphic, then $\mathcal{B}_{\pm}(G_1)$ and $\mathcal{B}_{\pm}(G_2)$ are isomorphic. This motivates the **isomorphism problem for plus-minus** weighted zero-sum sequences:

Let $\mathcal{B}_{\pm}(G_1)$ and $\mathcal{B}_{\pm}(G_2)$ be isomorphic. Under what circumstances are G_1 and G_2 isomorphic?

The isomorphism problem has been studied in various other situations. For instance, it was investigated for monoids of product-one sequences (e.g. by Geroldinger and Oh) and for power monoids (e.g. by Tringali and Yan).

The isomorphism problem II

Proposition (Fabsits, Geroldinger, R., Zhong, 2024)

Let G_1 and G_2 be abelian groups such that $|G_1|, |G_2| \neq 2$ and let $\varphi : \mathcal{B}_{\pm}(G_1) \to \mathcal{B}_{\pm}(G_2)$ be a monoid isomorphism.

(1)
$$\varphi(0) = 0$$
 and $|A| = |\varphi(A)|$ for every $A \in \mathcal{B}_{\pm}(G_1)$.

- (2) For every $g \in G_1$, there exists $h \in G_2$ with $\operatorname{ord}(h) = \operatorname{ord}(g)$ such that $\varphi(g^2) = h^2$.
- (3) For every $h \in G_2$, there exists $g \in G_1$ such that $\varphi(g^2) = h^2$.
- (4) There is a bijection $\varphi_0 : G_1 \to G_2$.

The isomorphism problem III

Theorem (Fabsits, Geroldinger, R., Zhong, 2024)

Let G_1 and G_2 be abelian groups and suppose that G_1 is a direct sum of cyclic groups. Then the groups G_1 and G_2 are isomorphic if and only their monoids of plus-minus weighted zero-sum sequences $\mathcal{B}_{\pm}(G_1)$ and $\mathcal{B}_{\pm}(G_2)$ are isomorphic.

Direct sums of cyclic groups

Remark

Let G be an abelian group.

- There are important situations in which G is a direct sum of cyclic groups. This is the case if G is free abelian, or if G is finitely generated, or if G is bounded (i.e., exp(G) < ∞).
- (2) Nevertheless, G need not always be a direct sum of cyclic groups. For instance, if $G = \mathbb{Q}/\mathbb{Z}$, then G is a torsion group, but not a direct sum of cyclic groups.

The characterization problem I

Let G_1 and G_2 be abelian groups. Clearly, if G_1 and G_2 are isomorphic, then $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2))$.

The characterization problem I

Let G_1 and G_2 be abelian groups. Clearly, if G_1 and G_2 are isomorphic, then $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2))$.

This leads to the characterization problem for monoids of plus-minus weighted zero-sum sequences: Suppose that $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2))$. Under what circumstances are G_1 and G_2 isomorphic?

The characterization problem I

Let G_1 and G_2 be abelian groups. Clearly, if G_1 and G_2 are isomorphic, then $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2))$.

This leads to the characterization problem for monoids of plus-minus weighted zero-sum sequences: Suppose that $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2))$. Under what circumstances are G_1 and G_2 isomorphic?

Note that if G_1 and G_2 are infinite abelian groups, then it follows from results of Geroldinger and Kainrath that $\mathcal{L}(\mathcal{B}_{\pm}(G_1)) = \mathcal{L}(\mathcal{B}_{\pm}(G_2)).$

The characterization problem II

Theorem (Fabsits, Geroldinger, R., Zhong, 2024)

$$\begin{array}{ll} (1) \ \mathcal{L}(\mathcal{B}_{\pm}(C_{1})) = \mathcal{L}(\mathcal{B}_{\pm}(C_{2})) = \left\{\{k\} : k \in \mathbb{N}_{0}\right\}. \\ (2) \ \mathcal{L}(\mathcal{B}_{\pm}(C_{3})) = \mathcal{L}(\mathcal{B}_{\pm}(C_{4})) = \mathcal{L}(\mathcal{B}_{\pm}(C_{2} \oplus C_{2})) = \\ \left\{y + 2k + [0, k] : y, k \in \mathbb{N}_{0}\right\}. \\ (3) \ \mathcal{L}(\mathcal{B}_{\pm}(C_{2}^{3})) = \left\{y + (k + 1) + [0, k] : y \in \mathbb{N}_{0}, k \in [0, 2]\right\} \cup \\ \left\{y + k + [0, k] : y \in \mathbb{N}_{0}, k \geq 3\right\} \cup \\ \left\{y + 2k + 2 \cdot [0, k] : y, k \in \mathbb{N}_{0}\right\}. \\ (4) \ \Delta(\mathcal{B}_{\pm}(C_{2} \oplus C_{4})) = [1, 2], \text{ and} \\ \mathcal{L}(\mathcal{B}_{\pm}(C_{2} \oplus C_{4})) = \left\{y + k + [0, k] : y \in \mathbb{N}_{0}, k \geq 2\right\} \cup \\ \left\{y + 2k + 2 \cdot [0, k] : y, k \in \mathbb{N}_{0}\right\}. \end{array}$$

The characterization problem III

Theorem (Fabsits, Geroldinger, R., Zhong, 2024)

Let G be a finite abelian group, let $n \ge 5$ be an odd integer and let C_n be a cyclic group of order n. If $\mathcal{L}(\mathcal{B}_{\pm}(G)) = \mathcal{L}(\mathcal{B}_{\pm}(C_n))$, then G and C_n are isomorphic.

References I

- S.D. Adhikari, D.J. Grynkiewicz, and Z.-W. Sun, *On weighted zero-sum sequences*, Adv. Appl. Math. **48** (2012), 506 527.
- A. Bashir and A. Reinhart, On transfer Krull monoids, Semigroup Forum 105 (2022), 73 – 95.
- P.-Y. Bienvenu and A. Geroldinger, *On algebraic properties of power monoids of numerical monoids*, Israel J. Math., to appear.
- S. Boukheche, K. Merito, O. Ordaz, and W.A. Schmid, Monoids of sequences over finite abelian groups defined via zero-sums with respect to a given set of weights and applications to factorizations of norms of algebraic integers, Comm. Algebra **50** (2022), 4195 – 4217.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

References II

- A. Geroldinger and F. Halter-Koch, *Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory*, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006.
- A. Geroldinger, F. Halter-Koch, and Q. Zhong, On monoids of weighted zero-sum sequences and applications to norm monoids in Galois number fields and binary quadratic forms, Acta Math. Hungarica 168 (2022), 144 – 185.
- A. Geroldinger and F. Kainrath, On sets of lengths in monoids of plus-minus weighted zer-sum sequences, https://arxiv.org/abs/2404.17258.
- A. Geroldinger and J.S. Oh, On the isomorphism problem for monoids of product-one sequences, https://arxiv.org/abs/2304.01459.

References III

- D.J. Grynkiewicz, *A weighted Erdős-Ginzburg-Ziv Theorem*, Combinatorica **26** (2006), 445 – 453.
- D.J. Grynkiewicz, *Structural Additive Theory*, Developments in Mathematics 30, Springer, Cham, 2013.
- D.J. Grynkiewicz and F. Hennecart, A weighted zero-sum problem with quadratic residues, Uniform Distribution Theory 10 (2015), 69 105.
- D.J. Grynkiewicz, L.E. Marchan, and O. Ordaz, A weighted generalization of two conjectures of Gao, Ramanujan J. 28 (2012), 323 – 340.

References IV

- D.J. Grynkiewicz, A. Philipp, and V. Ponomarenko, Arithmetic progression weighted subsequence sums, Israel J. Math. 193 (2013), 359 – 398.
- F. Halter-Koch, Arithmetical interpretation of Davenport constants with weights, Arch. Math. 103 (2014), 125 – 131.
- L.E. Marchan, O. Ordaz, D. Ramos, and W.A. Schmid, *Some exact values of the Harborth constant and its plus-minus weighted analogue*, Arch. Math. **101** (2013), 501 512.
- L.E. Marchan, O. Ordaz, I. Santos, and W.A. Schmid, Multi-wise and constrained fully weighted Davenport constants and interactions with coding theory, J. Comb. Theory, Ser. A. 135 (2015), 237 – 267.

References V

- L.E. Marchan, O. Ordaz, and W.A. Schmid, *Remarks on the plus-minus weighted Davenport constant*, Int. J. Number Theory 10, 1219 1239.
- L. Margolis, *The modular isomorphism problem: a survey*, Jahresber. Dtsch. Math.-Ver. **124** (2022), no. 3, 157 196.
- J.S. Oh, On the algebraic and arithmetic structure of the monoid of product-one sequences, J. Commut. Algebra 12 (2020), 409 – 433.
- S. Tringali and W. Yan, *A conjecture by Bienvenu and Geroldinger on power monoids*, Proc. Amer. Math. Soc., to appear.