
Integer-Valued Polynomials on Semidomains

Harold Polo

University of California, Irvine

(joint work with Scott Chapman and Nathan Kaplan)

AMS-UMI International Joint Meeting 2024
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Background: Monoids

Throughout this talk, a monoid M is a semigroup that is cancellative and commutative.

We denote by M× the set of units of M, and it is said that M is a group if M = M×. Given a
monoid M, we denote by G(M) the quotient group of M.

Examples: G(Q>0,×) = (Q>0,×); G(N0,+) = (Z,+)

An element a ∈ M \M× is called an atom if a = bc for some b, c ∈ M implies that either
b ∈ M× or c ∈ M×. We denote by A(M) the set of atoms of M. A monoid M is atomic
provided that every b ∈ M \M× can be expressed as a finite product of atoms.
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Background: Monoids

Let M be an atomic monoid, and let b ∈ M \M×.

• We let Z(b) denote the set of all factorizations of b, and we set L(b) := {|z | : z ∈ Z(b)}.

• M is a unique factorization monoid (or a UFM) if |Z(c)| = 1 for all c ∈ M \M×.

• M is a finite factorization monoid (or an FFM) if Z(c) is finite for all c ∈ M \M×.

• M is a bounded factorization monoid (or a BFM) if L(c) is finite for all c ∈ M \M×.

• M satisfies the ACCP if every ascending sequence of ideals eventually stabilizes.

UFM =⇒ FFM =⇒ BFM =⇒ ACCP =⇒ atomic
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Background: Semidomains

Definition. A commutative semiring S is a (nonempty) set endowed with two binary
operations denoted by ‘+’ and ‘·’ and called addition and multiplication, respectively, such
that the following conditions hold:

1. (S ,+) is a commutative monoid with its identity element denoted by 0;

2. (S , ·) is a commutative semigroup with an identity element denoted by 1;

3. b · (c + d) = b · c + b · d for all b, c , d ∈ S .

Definition. A semidomain is a subsemiring of an integral domain.

Examples: integral domains, Puiseux semirings, N0, R0, N0[X ], R0[X ]
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Background: Semidomains

Given a semidomain S , we denote by G(S) the quotient group of (S ,+) and by F(S) the field
of fractions of G(S).

Proposition(Gotti-P., 2022)

For a commutative semiring S , the following conditions are equivalent.

(a) S is a semidomain.

(b) The multiplication of S extends to G(S) turning G(S) into an integral domain.

We say that a semidomain S is atomic (resp., satisfies the ACCP) if its multiplicative monoid
S∗ is atomic (resp., satisfies the ACCP). In addition, we say that S is a UFS, FFS, or BFS
provided that S∗ is a UFM, FFM, or BFM, respectively.
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Construction

Definition. Let S be a semidomain. We set Int(S) := {f ∈ F(S)[X ] | f (S) ⊆ S} and call the
elements of Int(S) integer-valued polynomials on S . If S = N0, then we refer to the elements
of Int(S) as natural-valued polynomials.

Remark: Note that S ⊆ S [x ] ⊆ Int(S) ⊆ Int(G(S)), implying Int(S) is a semidomain.

A couple of examples of integer-valued polynomials on semidomains:

1. Int(R0) = {f ∈ R[X ] | f has no positive real roots of odd multiplicity}.This means that
Int(R0) 6= R0[X ]. In fact, the semidomain Int(R0) is a UFS!

2. G(Int(N0)) = Int(Z).

Proof: Let f ∈ Int(Z). We can write f =
∑n

i=0 ci
(X
ni

)
, where c0, . . . , cn ∈ Z. Thus,

f =
m∑
i=0

cti

(
X

nti

)
−
∑̀
j=0

crj

(
X

nrj

)
,

where cti and crj are positive integers for every i ∈ J0,mK and every j ∈ J0, `K.
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Factorization Properties

Theorem (Chapman-Kaplan-P., 202?)

Let S be a semidomain. The following statements hold.

1. Int(S) satisfies the ACCP if and only if S satisfies the ACCP.

2. Int(S) is a BFS if and only if S is a BFS.

3. Int(S) is an FFS if and only if S is an FFS.

Is Int(S) a UFS when S is a UFS?
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Factorization Properties

Given an atomic monoid M, the elasticity of a nonunit b ∈ M, denoted by ρ(b), is defined as

ρ(b) = sup L(b)
inf L(b) . By convention, we set ρ(u) = 1 for every u ∈ M×.

In addition, the elasticity

of the whole monoid M is defined to be ρ(M) := sup{ρ(b) | b ∈ M}.The set of elasticities of
M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity provided that
R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition(Chapman-Kaplan-P., 202?)

The elasticity of Int(N0) is infinite.

It is known that Int(Z) is fully elastic, so we pose the following question.

Open Question

Is Int(N0) fully elastic?

29 / 34



Factorization Properties

Given an atomic monoid M, the elasticity of a nonunit b ∈ M, denoted by ρ(b), is defined as

ρ(b) = sup L(b)
inf L(b) . By convention, we set ρ(u) = 1 for every u ∈ M×. In addition, the elasticity

of the whole monoid M is defined to be ρ(M) := sup{ρ(b) | b ∈ M}.

The set of elasticities of
M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity provided that
R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition(Chapman-Kaplan-P., 202?)

The elasticity of Int(N0) is infinite.

It is known that Int(Z) is fully elastic, so we pose the following question.

Open Question

Is Int(N0) fully elastic?

30 / 34



Factorization Properties

Given an atomic monoid M, the elasticity of a nonunit b ∈ M, denoted by ρ(b), is defined as

ρ(b) = sup L(b)
inf L(b) . By convention, we set ρ(u) = 1 for every u ∈ M×. In addition, the elasticity

of the whole monoid M is defined to be ρ(M) := sup{ρ(b) | b ∈ M}.The set of elasticities of
M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity provided that
R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition(Chapman-Kaplan-P., 202?)

The elasticity of Int(N0) is infinite.

It is known that Int(Z) is fully elastic, so we pose the following question.

Open Question

Is Int(N0) fully elastic?

31 / 34



Factorization Properties

Given an atomic monoid M, the elasticity of a nonunit b ∈ M, denoted by ρ(b), is defined as

ρ(b) = sup L(b)
inf L(b) . By convention, we set ρ(u) = 1 for every u ∈ M×. In addition, the elasticity

of the whole monoid M is defined to be ρ(M) := sup{ρ(b) | b ∈ M}.The set of elasticities of
M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity provided that
R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition(Chapman-Kaplan-P., 202?)

The elasticity of Int(N0) is infinite.

It is known that Int(Z) is fully elastic, so we pose the following question.

Open Question

Is Int(N0) fully elastic?

32 / 34



Factorization Properties

Given an atomic monoid M, the elasticity of a nonunit b ∈ M, denoted by ρ(b), is defined as

ρ(b) = sup L(b)
inf L(b) . By convention, we set ρ(u) = 1 for every u ∈ M×. In addition, the elasticity

of the whole monoid M is defined to be ρ(M) := sup{ρ(b) | b ∈ M}.The set of elasticities of
M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity provided that
R(M) = (Q ∪ {∞}) ∩ [1, ρ(M)].

Proposition(Chapman-Kaplan-P., 202?)

The elasticity of Int(N0) is infinite.

It is known that Int(Z) is fully elastic, so we pose the following question.

Open Question

Is Int(N0) fully elastic?

33 / 34



References

1. P. J. Cahen and J. L. Chabert: Elasticity for integer-valued polynomials, J. Pure Appl.
Math 103 (1995) 303–311.

2. S. T. Chapman and B. A. McClain: Irreducible polynomials and full elasticity in rings of
integer-valued polynomials, J. Algebra 293 (2005) 595–610.

3. S. Frisch, S. Nakato, and R. Rissner: Sets of lengths of factorizations of integer-valued
polynomials on Dedekind domains with finite residue fields, J. Algebra 528 (2019)
231–249.

4. J. S. Golan: Semirings and their Applications, Kluwer Academic Publishers, 1999.

5. F. Gotti and B. Li: Divisibility in rings of integer-valued polynomials, New York J. Math.
28 (2022) 117–139.
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