Nontriviality of rings of integral-valued polynomials

Giulio Peruginelli

Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Italy

gperugin@math.unipd.it

24 Luglio, 2024 Joint Meeting AMS-UMI, 23-26 Luglio 2024, Palermo.

Special Session: The Ideal Theory and Arithmetic of Rings, Monoids, and Semigroups. joint work with N. J. Werner Let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of the field of rational numbers and $\overline{\mathbb{Z}}$ be the absolute integral closure of \mathbb{Z} . Given a subset *S* of $\overline{\mathbb{Z}}$, we consider the ring of integral-valued polynomials on *S*:

$$\operatorname{Int}_{\mathbb{Q}}(S,\overline{\mathbb{Z}}) = \{f \in \mathbb{Q}[X] \mid f(S) \subseteq \overline{\mathbb{Z}}\}$$

If $S = \mathbb{Z}$ we get the classical ring of integer-valued polynomials $Int(\mathbb{Z})$.

Let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of the field of rational numbers and $\overline{\mathbb{Z}}$ be the absolute integral closure of \mathbb{Z} . Given a subset *S* of $\overline{\mathbb{Z}}$, we consider the ring of integral-valued polynomials on *S*:

$$\mathsf{Int}_{\mathbb{Q}}(S,\overline{\mathbb{Z}}) = \{f \in \mathbb{Q}[X] \mid f(S) \subseteq \overline{\mathbb{Z}}\}$$

If $S = \mathbb{Z}$ we get the classical ring of integer-valued polynomials $Int(\mathbb{Z})$.

Theorem (Loper-Werner, 2012)

Let $n \ge 1$ and let \mathcal{A}_n be the subset of those elements of $\overline{\mathbb{Z}}$ whose degree over \mathbb{Q} is bounded by n. Then $\operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_n, \overline{\mathbb{Z}}) = \operatorname{Int}_{\mathbb{Q}}(\mathcal{A}_n)$ is a Prüfer domain, which is strictly contained in $\operatorname{Int}(\mathbb{Z})$ if n > 1.

A chain of Prüfer domains

In particular,

$$\mathbb{Z}[X] \subset \ldots \subset \mathsf{Int}_{\mathbb{Q}}(\mathcal{A}_n) \subset \mathsf{Int}_{\mathbb{Q}}(\mathcal{A}_{n-1}) \subset \ldots \subset \mathsf{Int}_{\mathbb{Q}}(\mathcal{A}_1) = \mathsf{Int}(\mathbb{Z})$$

Moreover,

$$\bigcap_{n\in\mathbb{N}}\mathsf{Int}_{\mathbb{Q}}(\mathcal{A}_n)=\mathsf{Int}_{\mathbb{Q}}(\overline{\mathbb{Z}},\overline{\mathbb{Z}})=\{f\in\mathbb{Q}[X]\mid f(\overline{\mathbb{Z}})\subseteq\overline{\mathbb{Z}}\}=\mathbb{Z}[X]$$

Definition

Given
$$S \subseteq \overline{\mathbb{Z}}$$
, we say that $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ is nontrivial if $\mathbb{Z}[X] \subsetneq Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$.

Objective

We characterize those subsets $S \subset \overline{\mathbb{Z}}$ for which $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ is nontrivial.

Example: If S has bounded degree (i.e., $S \subseteq A_n$ for some $n \in \mathbb{N}$), then $\mathbb{Z}[X] \subsetneq \operatorname{Int}_{\mathbb{Q}}(A_n) \subseteq \operatorname{Int}_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$.

Trivial example

Let $S = \{\zeta_n\}_{n \in \mathbb{N}} \subset \overline{\mathbb{Z}}$ be the set of all primitive *n*-th roots of unity. If $f \in \operatorname{Int}_{\mathbb{Q}}(S,\overline{\mathbb{Z}})$ has degree *d*, say $f(X) = a_0 + a_1X + \ldots + a_dX^d$, choose $n \in \mathbb{N}$ such that $\varphi(n) > d$. Since $O_{\mathbb{Q}}(\zeta_n) = \mathbb{Z}[\zeta_n]$, we have

$$f(\zeta_n) = a_0 + a_1\zeta_n + \ldots + a_d\zeta_n^d \in \overline{\mathbb{Z}} \cap \mathbb{Q}(\zeta_n) = \mathbb{Z}[\zeta_n]$$

which forces $a_0, \ldots, a_d \in \mathbb{Z}$. Thus, $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}}) = \mathbb{Z}[X]$.

Trivial example

Let $S = \{\zeta_n\}_{n \in \mathbb{N}} \subset \overline{\mathbb{Z}}$ be the set of all primitive *n*-th roots of unity. If $f \in \operatorname{Int}_{\mathbb{Q}}(S,\overline{\mathbb{Z}})$ has degree *d*, say $f(X) = a_0 + a_1X + \ldots + a_dX^d$, choose $n \in \mathbb{N}$ such that $\varphi(n) > d$. Since $O_{\mathbb{Q}}(\zeta_n) = \mathbb{Z}[\zeta_n]$, we have

$$f(\zeta_n) = a_0 + a_1\zeta_n + \ldots + a_d\zeta_n^d \in \overline{\mathbb{Z}} \cap \mathbb{Q}(\zeta_n) = \mathbb{Z}[\zeta_n]$$

which forces $a_0, \ldots, a_d \in \mathbb{Z}$. Thus, $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}}) = \mathbb{Z}[X]$.

Nontrivial example

Fix a prime *p*. For each $k \in \mathbb{N}$ let $e_k = 1 - \frac{1}{2^k}$, and take $S = \{p^{e_k}\}_{k \in \mathbb{N}} = \{p^{1/2}, p^{3/4}, p^{7/8}, \ldots\}$. Then, *S* has unbounded degree, but $f(X) = X^2/p \in \operatorname{Int}_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ because $f(p^{e_k}) = p^{e_{k-1}}$ for all $k \ge 2$.

Over a valuation domain

Let V be a valuation domain with K = QF(V), maximal ideal M, associated valuation v and value group Γ_v .

Definition (Chabert, 2010)

A sequence $E = \{s_i\}_{i \in \Lambda} \subset K$ is said to be

- pseudo-divergent if $v(s_i s_j) > v(s_j s_k)$ for all $i < j < k \in \Lambda$;
- 3 pseudo-stationary if $v(s_i s_j) = v(s_k s_\ell)$ for all $i \neq j, k \neq \ell \in \Lambda$.

We define the gauge of E as the following sequence $\{\delta_i\}_{i\in\Lambda}$ of Γ_{v} :

- if E is pseudo-divergent, for each $i \in \Lambda$ we set $\delta_i = v(s_i s_j)$, j < i;
- ② if *E* is pseudo-stationary, we let $\delta_i = v(s_i s_j) = \delta$ for any *i*, *j* ∈ Λ, $i \neq j$.

The breadth ideal Br(E) is defined as:

• If *E* is pseudo-divergent, then Br(*E*) = { $x \in K \mid v(x) > \delta_i$ for some $i \in \Lambda$ };

3 If E is pseudo-stationary, then $Br(E) = \{x \in K \mid v(x) \ge \delta\}$.

For a subset S of V, we consider:

$$\operatorname{Int}_{\mathcal{K}}(S,V) = \{f \in \mathcal{K}[X] \mid f(S) \subseteq V\}$$

Theorem

Let $S \subseteq V$. The following are equivalent:

- Int_K(S, V) is nontrivial (i.e., $V[X] \subsetneq Int_K(S, V)$).
- ② There exist a finite subset $T \subseteq S$ and $\delta \in \Gamma_v \cup \{\infty\}$, $\delta > 0$ such that, for each $s \in S$, there exists $t \in T$ with $v(s t) \ge \delta$.
- If there exists $b \in M$ such that S/bV is finite.
- ③ S contains neither a pseudo-divergent sequence E with Br(E) = M, nor a pseudo-stationary sequence E with Br(E) = V.

Idea: Given $f \in Int_{\mathcal{K}}(S, V) \setminus V[X]$, we have

$$f(X) = \frac{g(X)}{c}$$

for some (monic) $g \in V[X]$ and $c \in M, c \neq 0$. The values $\{v(g(s)), s \in S\}$ cannot be too small $(\searrow 0; \text{ no pdv})$ and there can be only finitely many elements in S/M (no pst). G. Peruginelli gperugin@math.unipd.it Nontriviality integral-valued polys 6/14

From local to global

We let $\overline{\mathbb{Z}_p}$ be the absolute integral closure of the ring \mathbb{Z}_p of *p*-adic integers.

Definition

Let $p \in \mathbb{P}$ and let $S \subseteq \overline{\mathbb{Z}_{(p)}}$. Let $\mathcal{P}(S) \subseteq \mathbb{Z}_{(p)}[X]$ be set of minimal polynomials over \mathbb{Q} of all the elements of S. We define $\Sigma_p(S)$ to be the set of roots in $\overline{\mathbb{Z}_p}$ of the polynomials in $\mathcal{P}(S)$.

Theorem

Let $S \subseteq \overline{\mathbb{Z}}$. The following are equivalent.

- **1** Int_Q $(S, \overline{\mathbb{Z}})$ is nontrivial.
- @ There exists $p \in \mathbb{P}$ such that $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}_{(p)}})$ is nontrivial.
- If there exists $p \in \mathbb{P}$ such that $Int_{\mathbb{Q}_p}(\Sigma_p(S), \overline{\mathbb{Z}_p})$ is nontrivial.
- There exists $p \in \mathbb{P}$ such that $\operatorname{Int}_{\overline{\mathbb{Q}_p}}(\Sigma_p(S), \overline{\mathbb{Z}_p})$ is nontrivial.

Unbounded Sets with Trivial $\mathsf{Int}_{\mathbb{Q}}\text{-}\mathsf{Ring}$

For each prime $p \in \mathbb{P}$, we fix an extension u_p of v_p to $\overline{\mathbb{Q}}$.

Example 1

Let $p \in \mathbb{P}$ and take $S = \{\zeta_{p^k}\}_{k \in \mathbb{N}}$. Then, $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ is trivial: S is a pseudo-divergent sequence with respect to u_p with $Br(S) = M_{u_p}$ and it is pseudo-stationary with respect to u_q with $Br(S) = U_q$ for every prime $q \neq p$.

Example 2

Let $S = \{\zeta_p\}_{p \in \mathbb{P}}$. Then $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ is trivial: S is pseudo-stationary with $Br(S) = U_p$ with respect to every prime.

Example 3

Let $\mathbb{P} = \{p_1, p_2, \ldots\}$. Define $s_k = (p_1 \cdots p_k)^{1/k}$ for each $k \in \mathbb{N}$. For every p, $\{u_p(s_k)\}_{k \in \mathbb{N}}$ eventually strictly decreases to 0. Hence, S is eventually pseudo-divergent with respect to every prime p with $Br(E) = M_{u_p}$.

Lemma

Let $S \subseteq \overline{\mathbb{Z}}$ and $p \in \mathbb{P}$. Assume there exist $e_0, f_0 \in \mathbb{N}$ such that for all $s \in S$ and every prime P_s of $O_{\mathbb{Q}(s)}$ above p, we have $e(P_s|p) \leq e_0$ and $f(P_s|p) \leq f_0$. Then, $Int_{\mathbb{Q}}(S, \overline{\mathbb{Z}_{(p)}})$ is nontrivial.

Remarks: The assumption does not imply that S has bounded degree! Moreover, neither one of the two conditions is necessary.

Example

Let $\mathbb{Q}^{(2)} = \mathbb{Q}(\mathcal{A}_2)$ be the compositum in $\overline{\mathbb{Q}}$ of all quadratic number fields. It is known that there exists $N \in \mathbb{N}$ such that if u_p is a valuation of $\mathbb{Q}^{(2)}$ extending some v_p , $p \in \mathbb{P}$, then $e(u_p|v_p) \leq N$ and $f(u_p|v_p) \leq N$. If $\mathbb{P} = \{p_k\}_{k \in \mathbb{N}}$, for each $k \in \mathbb{N}$, let $s_k = \sum_{i=1}^k \sqrt{p_i}$, and take $S = \{s_k\}_{k \in \mathbb{N}}$. Then for each k, $[\mathbb{Q}(s_k) : \mathbb{Q}] = 2^k$. By the Lemma, $\operatorname{Int}_{\mathbb{Q}}(S, \overline{\mathbb{Z}})$ is nontrivial.

on Gilmer and Chabert's examples

Fix $p \in \mathbb{P}$. Let K be an infinite algebraic extension of \mathbb{Q} such that the integral closure D of $\mathbb{Z}_{(p)}$ in K is an almost Dedekind domain with finite residue fields satisfying either one of these 2 conditions:

i)
$$\{f(P \mid p) \mid p \in P \subset D\}$$
 is unbounded (Gilmer, 1990).

ii) $\{e(P \mid p) \mid p \in P \subset D\}$ is unbounded (Chabert, 1993).

Then $Int_{\mathbb{Q}}(D) = \mathbb{Z}_{(p)}[X]$. Note that there are neither pseudo-divergent sequences nor pseudo-stationary sequences in D with respect to any extension u_p of v_p .

However, if we consider all the embeddings in $\overline{\mathbb{Q}_p}$ of D at the same time:

$$\mathcal{D}_p = \bigcup_{p \in P \subset D} \tau_P(D_P) \subset \overline{\mathbb{Z}_p}$$

where τ_P is the \mathbb{Q} -embedding of K into $\overline{\mathbb{Q}_p}$, then

• $Int_{\mathbb{Q}}(D) = Int_{\mathbb{Q}}(\mathcal{D}_{p}, \overline{\mathbb{Z}_{p}})$

• \mathcal{D}_p contains either a pseudo-stationary sequence E with $Br(E) = \overline{\mathbb{Z}_p}$ (i) or a pseudo-divergent sequence E with $Br(E) = \overline{M_p}$ (ii).

Theorem

Let D be an integrally closed subring of $\overline{\mathbb{Z}_{(p)}}$ containing $\mathbb{Z}_{(p)}$. Then the following conditions are equivalent:

- the sets $F_p = \{f(P|p) \mid P \subset D\}$ and $E_p = \{e(P|p) \mid P \subset D\}$ are bounded.
- **2** $Int_{\mathbb{Q}}(D)$ is nontrivial.
- **3** Int $_{\mathbb{Q}}(D)$ is Prüfer.

Corollary

Let $D \subseteq \overline{\mathbb{Z}}$ be an integrally closed subring. Then the following holds:

- $Int_{\mathbb{Q}}(D)$ is non-trivial if and only if there exists some $p \in \mathbb{P}$ such that E_p and F_p are bounded.
- $Int_{\mathbb{Q}}(D)$ is Prüfer if and only if for each $p \in \mathbb{P}$ the sets E_p and F_p are bounded.

For $n \in \mathbb{N}$, let $\mathbb{Q}^{(n)} = \mathbb{Q}(\mathcal{A}_n)$ be the compositum in $\overline{\mathbb{Q}}$ of all number fields of degree $\leq n$ and let $O_{\mathbb{Q}^{(n)}}$ be its ring of integers. It is known that $O_{\mathbb{Q}^{(n)}}$ is a non-Noetherian almost Dedekind domain with finite residue fields (that is, locally it is a DVR with finite residue fields).

Theorem

For each $n \in \mathbb{N}$, $Int_{\mathbb{Q}}(O_{\mathbb{Q}^{(n)}})$ is a Prüfer domain.

Clearly, $Int_{\mathbb{Q}}(O_{\mathbb{Q}^{(n)}}) \subseteq Int_{\mathbb{Q}}(\mathcal{A}_n)$ and we don't know if the containment is strict. Moreover,

$$\ldots \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathcal{O}_{\mathbb{Q}^{(n+1)}}) \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathcal{O}_{\mathbb{Q}^{(n)}}) \subseteq \ldots \subseteq \operatorname{Int}_{\mathbb{Q}}(\mathcal{O}_{\mathbb{Q}^{(1)}}) = \operatorname{Int}(\mathbb{Z}).$$

Definition

For $S \subseteq \overline{\mathbb{Z}}$, we consider the *polynomial closure* of S as the largest subset S' of $\overline{\mathbb{Z}}$ for which $Int_{\mathbb{Q}}(S,\overline{\mathbb{Z}}) = Int_{\mathbb{Q}}(S',\overline{\mathbb{Z}})$. We say that S is *polynomially closed in* $\overline{\mathbb{Z}}$ if S' = S.

Theorem

 \mathbb{Z} is polynomially closed in $\overline{\mathbb{Z}}$.

Namely, if $\alpha \in \overline{\mathbb{Z}}$ is such that $f(\alpha) \in \overline{\mathbb{Z}}$ for each $f \in Int(\mathbb{Z})$, then $\alpha \in \mathbb{Z}$.

We conjecture that for each $n \in \mathbb{N}$, $\mathcal{A}_n = \{ \alpha \in \overline{\mathbb{Z}} \mid [\mathbb{Q}(\alpha) : \mathbb{Q}] \leq n \}$ is polynomially closed in $\overline{\mathbb{Z}}$.

Thank you!

- J.-L. Chabert. *On the polynomial closure in a valued field*, J. Number Theory 130 (2010), no. 2, 458-468.
 - A. K. Loper, N. J. Werner, *Generalized rings of integer-valued polynomials*. J. Number Theory 132 (2012), no. 11, 2481-2490.
- G. P., N. J. Werner, *Nontriviality of rings of integral-valued polynomials*, preprint, 2024, https://arxiv.org/abs/2407.09351.