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Introduction

Let Q be a fixed algebraic closure of the field of rational numbers and Z
be the absolute integral closure of Z. Given a subset S of Z, we consider
the ring of integral-valued polynomials on S :

IntQ(S ,Z) = {f ∈ Q[X ] | f (S) ⊆ Z}

If S = Z we get the classical ring of integer-valued polynomials Int(Z).

Theorem (Loper-Werner, 2012)

Let n ≥ 1 and let An be the subset of those elements of Z whose degree
over Q is bounded by n. Then IntQ(An,Z) = IntQ(An) is a Prüfer
domain, which is strictly contained in Int(Z) if n > 1.
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A chain of Prüfer domains

In particular,

Z[X ] ⊂ . . . ⊂ IntQ(An) ⊂ IntQ(An−1) ⊂ . . . ⊂ IntQ(A1) = Int(Z)

Moreover,⋂
n∈N

IntQ(An) = IntQ(Z,Z) = {f ∈ Q[X ] | f (Z) ⊆ Z} = Z[X ]

Definition

Given S ⊆ Z, we say that IntQ(S ,Z) is nontrivial if Z[X ] ⊊ IntQ(S ,Z).

Objective

We characterize those subsets S ⊂ Z for which IntQ(S ,Z) is nontrivial.

Example: If S has bounded degree (i.e., S ⊆ An for some n ∈ N), then
Z[X ] ⊊ IntQ(An) ⊆ IntQ(S ,Z).
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Examples of unbounded degree

Trivial example

Let S = {ζn}n∈N ⊂ Z be the set of all primitive n-th roots of unity. If
f ∈ IntQ(S ,Z) has degree d , say f (X ) = a0 + a1X + . . .+ adX

d , choose
n ∈ N such that φ(n) > d . Since OQ(ζn) = Z[ζn], we have

f (ζn) = a0 + a1ζn + . . .+ adζ
d
n ∈ Z ∩Q(ζn) = Z[ζn]

which forces a0, . . . , ad ∈ Z. Thus, IntQ(S ,Z) = Z[X ].

Nontrivial example

Fix a prime p. For each k ∈ N let ek = 1− 1
2k
, and take

S = {pek}k∈N = {p1/2, p3/4, p7/8, . . .}. Then, S has unbounded degree,
but f (X ) = X 2/p ∈ IntQ(S ,Z) because f (pek ) = pek−1 for all k ≥ 2.
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Over a valuation domain

Let V be a valuation domain with K = QF (V ), maximal ideal M, associated

valuation v and value group Γv .

Definition (Chabert, 2010)

A sequence E = {si}i∈Λ ⊂ K is said to be

1 pseudo-divergent if v(si − sj) > v(sj − sk) for all i < j < k ∈ Λ;

2 pseudo-stationary if v(si − sj) = v(sk − sℓ) for all i ̸= j , k ̸= ℓ ∈ Λ.

We define the gauge of E as the following sequence {δi}i∈Λ of Γv :

1 if E is pseudo-divergent, for each i ∈ Λ we set δi = v(si − sj), j < i ;

2 if E is pseudo-stationary, we let δi = v(si − sj) = δ for any i , j ∈ Λ,
i ̸= j .

The breadth ideal Br(E ) is defined as:

1 If E is pseudo-divergent, then
Br(E ) = {x ∈ K | v(x) > δi for some i ∈ Λ};

2 If E is pseudo-stationary, then Br(E ) = {x ∈ K | v(x) ≥ δ}.
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For a subset S of V , we consider:

IntK (S ,V ) = {f ∈ K [X ] | f (S) ⊆ V }

Theorem

Let S ⊆ V . The following are equivalent:

(1) IntK (S ,V ) is nontrivial (i.e., V [X ] ⊊ IntK (S ,V )).

(2) There exist a finite subset T ⊆ S and δ ∈ Γv ∪ {∞}, δ > 0 such that,
for each s ∈ S , there exists t ∈ T with v(s − t) ≥ δ.

(3) There exists b ∈ M such that S/bV is finite.

(4) S contains neither a pseudo-divergent sequence E with Br(E ) = M,
nor a pseudo-stationary sequence E with Br(E ) = V .

Idea: Given f ∈ IntK (S ,V ) \ V [X ], we have

f (X ) =
g(X )

c

for some (monic) g ∈ V [X ] and c ∈ M, c ̸= 0. The values
{v(g(s)), s ∈ S} cannot be too small ( ̸↘ 0; no pdv) and there can be only
finitely many elements in S/M (no pst).
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From local to global

We let Zp be the absolute integral closure of the ring Zp of p-adic integers.

Definition

Let p ∈ P and let S ⊆ Z(p). Let P(S) ⊆ Z(p)[X ] be set of minimal
polynomials over Q of all the elements of S . We define Σp(S) to be the
set of roots in Zp of the polynomials in P(S).

Theorem

Let S ⊆ Z. The following are equivalent.

(1) IntQ(S ,Z) is nontrivial.
(2) There exists p ∈ P such that IntQ(S ,Z(p)) is nontrivial.

(3) There exists p ∈ P such that IntQp(Σp(S),Zp) is nontrivial.

(4) There exists p ∈ P such that IntQp
(Σp(S),Zp) is nontrivial.

G. Peruginelli gperugin@math.unipd.it Nontriviality integral-valued polys 7 / 14



Unbounded Sets with Trivial IntQ-Ring

For each prime p ∈ P, we fix an extension up of vp to Q.

Example 1

Let p ∈ P and take S = {ζpk}k∈N. Then, IntQ(S ,Z) is trivial: S is a
pseudo-divergent sequence with respect to up with Br(S) = Mup and it is
pseudo-stationary with respect to uq with Br(S) = Uq for every prime
q ̸= p.

Example 2

Let S = {ζp}p∈P. Then IntQ(S ,Z) is trivial: S is pseudo-stationary with
Br(S) = Up with respect to every prime.

Example 3

Let P = {p1, p2, . . .}. Define sk = (p1 · · · pk)1/k for each k ∈ N. For every
p, {up(sk)}k∈N eventually strictly decreases to 0. Hence, S is eventually
pseudo-divergent with respect to every prime p with Br(E ) = Mup .
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Unbounded Sets with Nontrivial IntQ-Ring

Lemma

Let S ⊆ Z and p ∈ P. Assume there exist e0, f0 ∈ N such that for all s ∈ S
and every prime Ps of OQ(s) above p, we have e(Ps |p) ≤ e0 and

f (Ps |p) ≤ f0. Then, IntQ(S ,Z(p)) is nontrivial.

Remarks: The assumption does not imply that S has bounded degree!
Moreover, neither one of the two conditions is necessary.

Example

Let Q(2) = Q(A2) be the compositum in Q of all quadratic number fields.
It is known that there exists N ∈ N such that if up is a valuation of Q(2)

extending some vp, p ∈ P, then e(up|vp) ≤ N and f (up|vp) ≤ N. If

P = {pk}k∈N, for each k ∈ N, let sk =
∑k

i=1

√
pi , and take S = {sk}k∈N.

Then for each k, [Q(sk) : Q] = 2k . By the Lemma, IntQ(S ,Z) is nontrivial.
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on Gilmer and Chabert’s examples

Fix p ∈ P. Let K be an infinite algebraic extension of Q such that the
integral closure D of Z(p) in K is an almost Dedekind domain with finite
residue fields satisfying either one of these 2 conditions:

i) {f (P | p) | p ∈ P ⊂ D} is unbounded (Gilmer, 1990).

ii) {e(P | p) | p ∈ P ⊂ D} is unbounded (Chabert, 1993).

Then IntQ(D) = Z(p)[X ]. Note that there are neither pseudo-divergent
sequences nor pseudo-stationary sequences in D with respect to any
extension up of vp.
However, if we consider all the embeddings in Qp of D at the same time:

Dp =
⋃

p∈P⊂D

τP(DP) ⊂ Zp

where τP is the Q-embedding of K into Qp, then

IntQ(D) = IntQ(Dp,Zp)

Dp contains either a pseudo-stationary sequence E with Br(E ) = Zp

(i) or a pseudo-divergent sequence E with Br(E ) = Mp (ii).
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Case of rings (double boundedness is necessary)

Theorem

Let D be an integrally closed subring of Z(p) containing Z(p). Then the
following conditions are equivalent:

1 the sets Fp = {f (P|p) | P ⊂ D} and Ep = {e(P|p) | P ⊂ D} are
bounded.

2 IntQ(D) is nontrivial.

3 IntQ(D) is Prüfer.

Corollary

Let D ⊆ Z be an integrally closed subring. Then the following holds:

- IntQ(D) is non-trivial if and only if there exists some p ∈ P such that
Ep and Fp are bounded.

- IntQ(D) is Prüfer if and only if for each p ∈ P the sets Ep and Fp are
bounded.
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Addendum 1: Another chain of Prüfer domains

For n ∈ N, let Q(n) = Q(An) be the compositum in Q of all number fields
of degree ≤ n and let OQ(n) be its ring of integers. It is known that OQ(n)

is a non-Noetherian almost Dedekind domain with finite residue fields
(that is, locally it is a DVR with finite residue fields).

Theorem

For each n ∈ N, IntQ(OQ(n)) is a Prüfer domain.

Clearly, IntQ(OQ(n)) ⊆ IntQ(An) and we don’t know if the containment is
strict. Moreover,

. . . ⊆ IntQ(OQ(n+1)) ⊆ IntQ(OQ(n)) ⊆ . . . ⊆ IntQ(OQ(1)) = Int(Z).
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Addendum 2: Polynomial closure in Z

Definition

For S ⊆ Z, we consider the polynomial closure of S as the largest subset
S ′ of Z for which IntQ(S ,Z) = IntQ(S

′,Z). We say that S is polynomially
closed in Z if S ′ = S .

Theorem

Z is polynomially closed in Z.

Namely, if α ∈ Z is such that f (α) ∈ Z for each f ∈ Int(Z), then α ∈ Z.

We conjecture that for each n ∈ N, An = {α ∈ Z | [Q(α) : Q] ≤ n} is
polynomially closed in Z.
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Thank you!
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