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Preliminaries

Given gy < ... < ge integers, with (go,...,8.) = 1, a relation
between them is (informally) an equation of the form

Z a8 = Z ngJ

We usually denote relations by (a, b) € Ne+1 x Net+1,
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Preliminaries

Given gy < ... < ge integers, with (go,...,8.) = 1, a relation
between them is (informally) an equation of the form

D aiei=) big
We usually denote relations by (a, b) € Ne+1 x Net+1,

Problem

How many minimal relations are there among go, . . ., ge”
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Preliminaries

Let I = (go,...,8e)n C N.
® g0, --.,8e are the minimal generators of .
@ (g0,---,8) =1 implies that N\ I is finite (i.e. [ is a
numerical semigroup).
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@ (g0,---,8) =1 implies that N\ I is finite (i.e. [ is a
numerical semigroup).
Define ¢ : N*T1 — N as (Ao, ..., Ae) = Aog0 + - - . + Ae&e. Then

2 N1/ kerp, where kerp = {(a, b) € N*TLxNeTL : 5(a) = (b)}.

ker o can be generated by finitely many relations.

= ,0,0,0),(0,1,1,0)],[(0,0,2,0),(0,1,0,1)],
[(0,3,0,0),(0,0,1,1)],[(0,2,1,0),(0,0,0,2)]).
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Preliminaries

Let I' = (go,---,8e)n € N.
® g0, --.,8e are the minimal generators of .
@ (g0,---,8) =1 implies that N\ I is finite (i.e. [ is a
numerical semigroup).
Define ¢ : N*T1 — N as (Ao, ..., Ae) = Aog0 + - - . + Ae&e. Then

2 N1/ kerp, where kerp = {(a, b) € N*TLxNeTL : 5(a) = (b)}.

ker o can be generated by finitely many relations.

= ,0,0,0),(0,1,1,0)],[(0,0,2,0),(0,1,0,1)],
[(0,3,0,0),(0,0,1,1)],[(0,2,1,0),(0,0,0,2)]).

Problem

Compute the number of minimal relations p(I).
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Small cases

Notation:
e edim(l') = e + 1 (embedding dimension);
o mult(l') = go (multiplicity).
We always have e + 1 < gp.
e e=0=T=N,p(lN=0;
o e=1=T = (g, &) kerp = ([(g1,0),(0,20)]), p(T) = 1;
e=2= p(I') € {2,3} [Herzog, 1970]
If e >3, p(I') can be arbitrarily large; [Bresinsky, 1975]

p() > e, and if p(I') = e then T is called a complete
intersection.

p(MN) < (8) —2go —2e +2 < (%) [Rosales, 1996]
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Main problems

Problem 1
Determine B(e, m) = max{p(l')|edim(I') = e + 1, mult(I') = m}.
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Main problems

Problem 1
Determine B(e, m) = max{p(l')|edim(I') = e + 1, mult(I') = m}.

This problem is solved only for few values, when m and e are close.

o B(e,e+1) = (°31).
e B(e,e+2)=B(e,e+3) = (egl) [Garcia-Sdnchez,Rosales,
1998].
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Main problems

Problem 1
Determine B(e, m) = max{p(l')|edim(I') = e + 1, mult(I') = m}.

This problem is solved only for few values, when m and e are close.

o B(e,e+1) = (°31).
e B(e,e+2)=B(e,e+3) = (egl) [Garcia-Sdnchez,Rosales,
1998].
Problem 2

Determine C(w) = sup{p(l')|ge — g0 = w}.

o C(w) < oo. [Vu, 2014]
e Conjecture: C(w) = (ng). [Herzog,Stamate, 2014]
@ No explicit upper bound.
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Semigroup rings

Let K be a field, and let P = K{[xo, . .., Xe]].
The semigroup ring of T is Rr = K[[t&, ..., t&]].
Consider the map

®: P Rr CK[[t]], ®(x)=t&.

Toric ideal of T: Ir = ker ® = (x? — xP | (a, b) € ker ).
Clearly Rr = P/Ir.
Then p(I') is the number p(/r) of minimal generators of Ir.

[ =(7,9,12,15).
Rr = K[[t", t°,t12, t'%]] = K][[w, x, y, z]]/Ir, where
2

Ir= (W —xy,y* —xz,x* —yz,x°y — 2°) C K[[w, x, y,2]].
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maximal ideal.
e Rr = Rr/(t®) is an artinian local K-algebra with /(Rr) = go.

o Rr = P/Ir, with P = P/(x0) = K[[xa, ..., %], Ir = {50,

o If Q= K[xi,...,xe] = gr(P), then gr(Rr) = Q/It, where Tt
is the ideal of initial forms of /.
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The key idea

Rr is a 1-dimensional Cohen-Macaulay local domain of multiplicity
&0-
o (t8°) C Ry is the unique monomial minimal reduction of the
maximal ideal.

e Rr = Rr/(t®) is an artinian local K-algebra with /(Rr) = go.

o Rr = P/Ir, with P = P/(x0) = K[[xa, ..., %], Ir = {50,

0 If Q=K][x1,...,xe] = gr(ﬁ),ﬁthen gr(Rr) = Q/TF, where TF
is the ideal of initial forms of /.
o If Jr = ineviex(It) € Q, then

p(N) = u(lr) = u(lr) < p(lr) < p(dr).
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The key idea

M =(7,9,12,15).
Ir = (W3 = xy,y* — xz,x* — yz,xy — 2°) C K][[w, x, y, ]|
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The key idea

[ =(7,9,12,15).
/r = (W3 _Xy)y27_ XZ’X3 —yZ,X2y - 22) g K[[W,X,y,Z]]

We can compute /r by going modulo w:
Ir = (xv,y* = xz,x* = yz,x’y — 2°) C K|[x,y, 2]|
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The key idea

= (7,9,12,15).
/r—(W —xy,y? — xz,x3 — yz,x’y — 2°) C K[[w, x, y, ]
We can compute I by going modulo w:
Ir = (xy,y? — xz,x3 — yz,x’y — 2°) C K][[x, v, Z]]
Since x* = (x(x3 — yz) — z(xy))* we have
l,— = (xy,y? — xz,yz,2%,x*) C K[x, y, 7]
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The key idea

[ =(7,9,12,15).

Ir = w3 —xy,y? — xz,x3 — yz,x’y — 22) C K[[w, x, y, Z]]
We can compute I by going modulo w:

Ir = (xy,y? = xz,x> — yz,x%y — 2°) C K[[x, y, 2]]

Since x* = (x(x3 — yz) — z(xy))* we have

TF = (xy,y? — xz,yz,2%,x*) C K[x, y, 7]

And similarly, we can see that x°z € Jr, thus

J = (xy,y? yz, 2%, x* x%z) C K[x, y, 2]
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The key idea - Problem 2

Jr is a monomial ideal in K[xi, ..., xe] with colength go.
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The key idea - Problem 2

Jr is a monomial ideal in K[xi, ..., xe] with colength go.

€ Gt et Vot xE,x), where g = | L.

Moreover, HS(Q/Jr,d) <1+ d(ge — go) for all d € N.

The value ge — gop is exactly the value w in Problem 2!
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The key idea - Problem 2

Jr is a monomial ideal in K[xi, ..., xe] with colength go.

JrC (Xt xem1)? + x&(x1, -, Xe), where g = [g"’%ﬁof

Moreover, HS(Q/Jr,d) <1+ d(ge — go) for all d € N.

The value ge — gop is exactly the value w in Problem 2!

Problem 2 (extended)

Let S = K[x1,...,%e], and | C S be a homogeneous ideal such
that ¢(S/1) < oo, and w € N.

Find upper bounds for p(/) under the assumption that
HS(S/1,d) <1+ dw for all d € N.
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The key idea - Problem 2

A lexsegment ideal L C S is a monomial ideal such that, for each
d, the graded component [L]4 is spanned by the first dimk[L]4
monomials of [S]4, with respect to the lexicographic order.

For any homogeneous ideal /| C S, there exists a unique lexsegment
ideal, denoted by Lex(/) C S, such that HF (/) = HF (Lex(1)).
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Theorem [Bigatti-Hulett-Pardue]
p(!) < p(Lex(1)).
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The key idea - Problem 2

A lexsegment ideal L C S is a monomial ideal such that, for each
d, the graded component [L]4 is spanned by the first dimk[L]4
monomials of [S]4, with respect to the lexicographic order.

For any homogeneous ideal /| C S, there exists a unique lexsegment
ideal, denoted by Lex(/) C S, such that HF (/) = HF (Lex(1)).

Theorem [Bigatti-Hulett-Pardue]
p(!) < p(Lex(1)).

If L C Sis a lex ideal, consider [ = L+0e) cS= Klxi, .-y Xe—1]-

Xe

r
Then (L) is related to £(S/L). By studying this length we obtain:

u(1) < w-9V2%, and thus C(w) < w -9V,
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The key idea - Problem 1

Problem 1 (extended)
Find upper bounds for (/) under the assumption that ¢(S/1) = m.
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The key idea - Problem 1

Problem 1 (extended)
Find upper bounds for (/) under the assumption that ¢(S/1) = m.

Let L = L(e,m) C Kl[xi,...,Xe] = P be the unique ideal such that
P/L is artinian of length m, L = (x1,...,x) "t + L and Lis
generated by the first s monomials of degree r in the lex ordering.

L(3,16) = (x,y,2)* 4+ (x3, X%y, x*z,xy?) C K|x, y, 2].
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The key idea - Problem 1

Problem 1 (extended)
Find upper bounds for (/) under the assumption that ¢(S/1) = m.

Let L = L(e,m) C Kl[xi,...,Xe] = P be the unique ideal such that
P/L is artinian of length m, L = (x1,...,x) "t + L and Lis
generated by the first s monomials of degree r in the lex ordering.

L(3,16) = (x,y,2)* 4+ (x3, X%y, x*z,xy?) C K|x, y, 2].

Let ¢(e, m) = u(L(e, m)).
Theorem [Elias, Robbiano, Valla, 1991]

If ¢(P/1) = m then p(l) < {(e, m).
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An explicit formula for ¢(e, m)

Let n, d be positive integers.
There exist unique integers ng > ng, > ... > n; > j > 1 such that

Define

Theorem [Elias, Robbiano, Valla, 1991]

Let e, m € N be such that 4 < e+ 1 < m, let r be the unique
integer such that (eJ” 1) <m< (e+’) and let s = m — (e+r71)_

r—1
Then {(e,m) = (°T'71) +5<> —s.

r
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We are left with a question: is our context general enough to
achieve this bound?
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@ For every § = m — e fixed, B(e, m) = {(e, m) for m >> 0.
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The key idea - Problem 1

We are left with a question: is our context general enough to
achieve this bound?
The answer is yes...

Q@ B(e,m)=/{(e,m)if m—e <6.
@ For every § = m — e fixed, B(e, m) = {(e, m) for m >> 0.

...and no (depending on e and m).

Q B(e,m) < {(e,m)if m—e=7and e=34,5.
@ For every fixed e, B(e, m) < {(e, m) for m >> 0.
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Some examples

r:<9,10,12,13>,e:37m:g0:9.
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Some examples

r=(9,10,12, 13) e=3,m=go=09.
Ir = (23— wx3,yz% — w?x?, y?z — w3x, y3 — w* xz2 — wh, xy —
wz x5z~ wy?,x* = why) € K[w.x.y.2].

/r—( 3,_)/2 7y Z,y 3X227Xy7X227X3)g K[[X,_y,Z]].
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Some examples

(Bample |
r=(9,10,12, 13) =3, m=go=09.

= (23— WX ,yz% — W2X2 2z —wix, yd —wh xz? — wh xy —
wz, x%z — wy?, x3 w?y) C K[[w, x, y, Z]].

/r—( 37.)/2 Y Z,ys,XZ y XY X 27X3) - K[[X,y,Z]].

J = (XY) + (X,y,Z)3 - K[X,y,Z].

On the other hand L(3,9) = (x2) + (x, y, z)3.
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Some examples

3

Ir— z> — wx ,yzz—w2x2 y2z —wix,y® — wh xz%2 — w* xy —

wz, x%z — wy?, x )CK[[ny,z]]

/r—( 37.)/2 7y Za.y aXZ 7Xy7X Z,X ) - K[[X,y,Z]].
Jr = () + (v, 2)° € Kx,y,2].

On the other hand L(3,9) = (x2) + (x, y, z)3.

u(Ir) = p(Jr) = p(L(e, m)).

14 /15



Results
000000080

Some examples

(Exgmple |
Mr=(9,10,12,13), e =3,m=gop = 9.

Ir= (2% — wx3,yz? — W2x2,y22 wi3x, y3 — wh xz2 — wh, xy —
wz, x%z — Wy2,x3 - W y) - K[[W x,¥,2]].

Ir = (23,y2%, y?z,y3,x2%, xy, x°2, x3) C K][[x, y, Z]].

J = (Xy) + (Xa)/az)?) - K[X,y,Z].

On the other hand L(3,9) = (x2) + (x, y, z)3.

pu(Ir) = p(Jr) = p(L(e, m)).

[ =(10,11,13,14), e = 3, m = go = 10.

\

.
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(Exgmple |
Mr=(9,10,12,13), e =3,m=gop = 9.

Ir= (2% — wx3,yz? — W2x2,y22 wi3x, y3 — wh xz2 — wh, xy —
wz, x%z — Wy2,x3 - W y) - K[[W x,¥,2]].

Ir = (23,y2%, y?z,y3,x2%, xy, x°2, x3) C K][[x, y, Z]].

J = (Xy) + (Xa)/az)?) - K[X,y,Z].

On the other hand L(3,9) = (x2) + (x, y, z)3.

pliIr) = p(Ir) = p(L(e, m)). )

= (10,11,13,14), e—3,m:g0:10_
Ir= (22 - W2X2 yz2 —wix, y?z — w* y3 — xz2% xy — wz, x%°z —

wy?, x3 — w2y) C K[[w, x, y, Z]].

.

14 /15



Results
000000080

Some examples

(Exgmple |
Mr=(9,10,12,13), e =3,m=gop = 9.

Ir= (2% — wx3,yz? — W2x2,y22 wi3x, y3 — wh xz2 — wh, xy —
wz, x%z — Wy2,x3 - W y) - K[[W x,¥,2]].

Ir = (23,y2%, y?z,y3,x2%, xy, x°2, x3) C K][[x, y, Z]].

J = (Xy) + (Xa)/az)?) - K[X,y,Z].

On the other hand L(3,9) = (x2) + (x, y, z)3.

pliIr) = p(Ir) = p(L(e, m)). )

= (10,11, 13, 14), e—3,m:g0:10.
3

—(23—Wx yz2 —wix, y?z — w* y3 — xz2% xy — wz, x%°z —

Wy2,x w?y) C K[[W x,y,2]].
(xy) + (x,y,2)* C K[x,y,2].
10

Bt L= (g o

.
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Mr=(9,10,12,13), e =3,m=gop = 9.

Ir= (2% — wx3,yz? — W2x2,y22 wi3x, y3 — wh xz2 — wh, xy —
wz, x%z — Wy2,x3 - W y) - K[[W x,¥,2]].

Ir = (23,y2%, y?z,y3,x2%, xy, x°2, x3) C K][[x, y, Z]].

J = (Xy) + (Xa)/az)?) - K[X,y,Z].

On the other hand L(3,9) = (x2) + (x, y, z)3.

pliIr) = p(Ir) = p(L(e, m)). )

= (10,11, 13, 14), e—3,m:g0:10.
3

—(23—Wx yz2 —wix, y?z — w* y3 — xz2% xy — wz, x%°z —

Wy2,x w?y) C K[[W x,y,2]].
(xy) + (x,y,2)* C K[x,y,2].
10

O G P o)

.
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Thank you for your attention!
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