Bounds for syzigies of monomial curves (joint work with G. Caviglia and A. Sammartano)

Alessio Moscariello

University of Catania

Palermo, July 24 2024

Given $g_0 < \ldots < g_e$ integers, with $(g_0, \ldots, g_e) = 1$, a relation between them is (informally) an equation of the form

$$\sum a_i g_i = \sum b_j g_j.$$

We usually denote relations by $(a, b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1}$.

Given $g_0 < \ldots < g_e$ integers, with $(g_0, \ldots, g_e) = 1$, a relation between them is (informally) an equation of the form

$$\sum a_i g_i = \sum b_j g_j.$$

We usually denote relations by $(a, b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1}$.

Problem

How many minimal relations are there among g_0, \ldots, g_e ?

Let
$$\Gamma = \langle g_0, \ldots, g_e \rangle_{\mathbb{N}} \subseteq \mathbb{N}$$
.

- g_0, \ldots, g_e are the minimal generators of Γ .
- $(g_0, \ldots, g_e) = 1$ implies that $\mathbb{N} \setminus \Gamma$ is finite (i.e. Γ is a numerical semigroup).

Let
$$\Gamma = \langle g_0, \ldots, g_e \rangle_{\mathbb{N}} \subseteq \mathbb{N}$$
.

- g_0, \ldots, g_e are the minimal generators of Γ .
- $(g_0, \ldots, g_e) = 1$ implies that $\mathbb{N} \setminus \Gamma$ is finite (i.e. Γ is a numerical semigroup).

Define
$$\varphi: \mathbb{N}^{e+1} \to \mathbb{N}$$
 as $\varphi(\lambda_0, \dots, \lambda_e) = \lambda_0 g_0 + \dots + \lambda_e g_e$. Then

 $\Gamma \cong \mathbb{N}^{e+1}/\ker \varphi$, where $\ker \varphi = \{(a,b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1} : \varphi(a) = \varphi(b)\}$.

Let
$$\Gamma = \langle g_0, \dots, g_e \rangle_{\mathbb{N}} \subseteq \mathbb{N}$$
.

- g_0, \ldots, g_e are the minimal generators of Γ .
- $(g_0, \ldots, g_e) = 1$ implies that $\mathbb{N} \setminus \Gamma$ is finite (i.e. Γ is a numerical semigroup).

Define
$$\varphi: \mathbb{N}^{e+1} \to \mathbb{N}$$
 as $\varphi(\lambda_0, \dots, \lambda_e) = \lambda_0 g_0 + \dots + \lambda_e g_e$. Then

$$\Gamma \cong \mathbb{N}^{e+1}/\ker \varphi$$
, where $\ker \varphi = \{(a,b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1} : \varphi(a) = \varphi(b)\}$.

 $\ker \varphi$ can be generated by finitely many relations.

Let
$$\Gamma = \langle g_0, \ldots, g_e \rangle_{\mathbb{N}} \subseteq \mathbb{N}$$
.

- g_0, \ldots, g_e are the minimal generators of Γ .
- $(g_0, \ldots, g_e) = 1$ implies that $\mathbb{N} \setminus \Gamma$ is finite (i.e. Γ is a numerical semigroup).

Define
$$\varphi: \mathbb{N}^{e+1} \to \mathbb{N}$$
 as $\varphi(\lambda_0, \dots, \lambda_e) = \lambda_0 g_0 + \dots + \lambda_e g_e$. Then

$$\Gamma \cong \mathbb{N}^{e+1}/\ker \varphi$$
, where $\ker \varphi = \{(a,b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1} : \varphi(a) = \varphi(b)\}$.

 $\ker \varphi$ can be generated by finitely many relations.

$$\begin{split} &\Gamma = \langle 7, 9, 12, 15 \rangle. \text{ Then} \\ &\ker \varphi = \langle \textbf{[}(3, 0, 0, 0), (0, 1, 1, 0)\textbf{]}, \textbf{[}(0, 0, 2, 0), (0, 1, 0, 1)\textbf{]}, \textbf{[}(0, 3, 0, 0), (0, 0, 1, 1)\textbf{]}, \textbf{[}(0, 2, 1, 0), (0, 0, 0, 2)\textbf{]} \rangle. \end{split}$$

Let
$$\Gamma = \langle g_0, \dots, g_e \rangle_{\mathbb{N}} \subseteq \mathbb{N}$$
.

- g_0, \ldots, g_e are the minimal generators of Γ .
- $(g_0, \ldots, g_e) = 1$ implies that $\mathbb{N} \setminus \Gamma$ is finite (i.e. Γ is a numerical semigroup).

Define
$$\varphi: \mathbb{N}^{e+1} \to \mathbb{N}$$
 as $\varphi(\lambda_0, \dots, \lambda_e) = \lambda_0 g_0 + \dots + \lambda_e g_e$. Then

$$\Gamma \cong \mathbb{N}^{e+1}/\ker \varphi$$
, where $\ker \varphi = \{(a,b) \in \mathbb{N}^{e+1} \times \mathbb{N}^{e+1} : \varphi(a) = \varphi(b)\}$.

 $\ker \varphi$ can be generated by finitely many relations.

Example

$$\begin{split} &\Gamma = \langle 7, 9, 12, 15 \rangle. \text{ Then} \\ &\ker \varphi = \langle \textbf{[(3,0,0,0), (0,1,1,0)], [(0,0,2,0), (0,1,0,1)],} \\ &\textbf{[(0,3,0,0), (0,0,1,1)], [(0,2,1,0), (0,0,0,2)]} \rangle. \end{split}$$

Problem

Compute the number of minimal relations $\rho(\Gamma)$.

Small cases

Notation:

- $edim(\Gamma) = e + 1$ (embedding dimension);
- $mult(\Gamma) = g_0 \ (multiplicity)$.

We always have $e + 1 \le g_0$.

- $e = 0 \Rightarrow \Gamma = \mathbb{N}, \rho(\Gamma) = 0$;
- $e = 1 \Rightarrow \Gamma = \langle g_0, g_1 \rangle$, $\ker \varphi = \langle [(g_1, 0), (0, g_0)] \rangle$, $\rho(\Gamma) = 1$;
- $e = 2 \Rightarrow \rho(\Gamma) \in \{2, 3\}$ [Herzog, 1970]
- If $e \ge 3$, $\rho(\Gamma)$ can be arbitrarily large; [Bresinsky, 1975]
- $\rho(\Gamma) \ge e$, and if $\rho(\Gamma) = e$ then Γ is called a *complete* intersection.
- $\rho(\Gamma) \le \binom{g_0}{2} 2g_0 2e + 2 \le \binom{g_0}{2}$ [Rosales, 1996]

Problem 1

Determine $B(e, m) = \max\{\rho(\Gamma)|edim(\Gamma) = e + 1, mult(\Gamma) = m\}.$

Problem 1

Determine $B(e, m) = \max\{\rho(\Gamma)|edim(\Gamma) = e + 1, mult(\Gamma) = m\}.$

This problem is solved only for few values, when m and e are close.

- $B(e, e+1) = {e+1 \choose 2}$.
- $B(e, e + 2) = B(e, e + 3) = {e+1 \choose 2}$ [García-Sánchez, Rosales, 1998].

Problem 1

Determine $B(e, m) = \max\{\rho(\Gamma)|edim(\Gamma) = e + 1, mult(\Gamma) = m\}.$

This problem is solved only for few values, when m and e are close.

- $B(e, e+1) = {e+1 \choose 2}$.
- $B(e, e + 2) = B(e, e + 3) = {e+1 \choose 2}$ [García-Sánchez, Rosales, 1998].

Problem 2

Determine $C(w) = \sup \{\rho(\Gamma) | g_e - g_0 = w\}.$

Problem 1

Determine $B(e, m) = \max\{\rho(\Gamma)|edim(\Gamma) = e + 1, mult(\Gamma) = m\}.$

This problem is solved only for few values, when m and e are close.

- $B(e, e+1) = {e+1 \choose 2}$.
- $B(e, e + 2) = B(e, e + 3) = {e+1 \choose 2}$ [García-Sánchez, Rosales, 1998].

Problem 2

Determine $C(w) = \sup\{\rho(\Gamma)|g_e - g_0 = w\}.$

- $C(w) < \infty$. [Vu, 2014]
- Conjecture: $C(w) = {w+1 \choose 2}$. [Herzog, Stamate, 2014]
- No explicit upper bound.

Let K be a field, and let $P = K[[x_0, ..., x_e]]$. The semigroup ring of Γ is $R_{\Gamma} = K[[t^{g_0}, ..., t^{g_e}]]$.

Let K be a field, and let $P = K[[x_0, \ldots, x_e]]$. The *semigroup ring* of Γ is $R_{\Gamma} = K[[t^{g_0}, \ldots, t^{g_e}]]$. Consider the map

$$\Phi: P \to R_{\Gamma} \subseteq K[[t]], \quad \Phi(x_i) = t^{g_i}.$$

Let K be a field, and let $P = K[[x_0, \ldots, x_e]]$. The *semigroup ring* of Γ is $R_{\Gamma} = K[[t^{g_0}, \ldots, t^{g_e}]]$. Consider the map

$$\Phi: P \to R_{\Gamma} \subseteq K[[t]], \quad \Phi(x_i) = t^{g_i}.$$

Toric ideal of Γ : $I_{\Gamma} = \ker \Phi = (x^a - x^b \mid (a, b) \in \ker \varphi)$. Clearly $R_{\Gamma} = P/I_{\Gamma}$.

Preliminaries

Let K be a field, and let $P = K[[x_0, \ldots, x_e]]$. The *semigroup ring* of Γ is $R_{\Gamma} = K[[t^{g_0}, \ldots, t^{g_e}]]$. Consider the map

$$\Phi: P \to R_{\Gamma} \subseteq K[[t]], \quad \Phi(x_i) = t^{g_i}.$$

Toric ideal of Γ : $I_{\Gamma} = \ker \Phi = (x^a - x^b \mid (a, b) \in \ker \varphi)$. Clearly $R_{\Gamma} = P/I_{\Gamma}$.

Then $\rho(\Gamma)$ is the number $\mu(I_{\Gamma})$ of minimal generators of I_{Γ} .

Let K be a field, and let $P = K[[x_0, \ldots, x_e]]$. The *semigroup ring* of Γ is $R_{\Gamma} = K[[t^{g_0}, \ldots, t^{g_e}]]$. Consider the map

$$\Phi: P \to R_{\Gamma} \subseteq K[[t]], \quad \Phi(x_i) = t^{g_i}.$$

Toric ideal of Γ : $I_{\Gamma} = \ker \Phi = (x^a - x^b \mid (a, b) \in \ker \varphi)$. Clearly $R_{\Gamma} = P/I_{\Gamma}$. Then $\rho(\Gamma)$ is the number $\mu(I_{\Gamma})$ of minimal generators of I_{Γ} .

$$\Gamma = \langle 7, 9, 12, 15 \rangle$$
. $R_{\Gamma} = K[[t^7, t^9, t^{12}, t^{15}]] \cong K[[w, x, y, z]]/I_{\Gamma}$, where

$$I_{\Gamma} = (w^3 - xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[w, x, y, z]].$$

 R_{Γ} is a 1-dimensional Cohen-Macaulay local domain of multiplicity g_0 .

• $(t^{g_0}) \subseteq R_{\Gamma}$ is the unique monomial minimal reduction of the maximal ideal.

- $(t^{g_0}) \subseteq R_{\Gamma}$ is the unique monomial minimal reduction of the maximal ideal.
- $\overline{R}_{\Gamma}=R_{\Gamma}/(t^{g_0})$ is an artinian local K-algebra with $\ell(R_{\Gamma})=g_0.$

- $(t^{g_0}) \subseteq R_{\Gamma}$ is the unique monomial minimal reduction of the maximal ideal.
- $\overline{R}_{\Gamma}=R_{\Gamma}/(t^{g_0})$ is an artinian local K-algebra with $\ell(R_{\Gamma})=g_0$.
- $\overline{R}_{\Gamma} = \overline{P}/\overline{I}_{\Gamma}$, with $\overline{P} = P/(x_0) \cong K[[x_1, \dots, x_e]]$, $\overline{I}_{\Gamma} = \frac{I_{\Gamma} + (x_0)}{(x_0)}$.

- $(t^{g_0}) \subseteq R_{\Gamma}$ is the unique monomial minimal reduction of the maximal ideal.
- $\overline{R}_{\Gamma} = R_{\Gamma}/(t^{g_0})$ is an artinian local K-algebra with $\ell(R_{\Gamma}) = g_0$.
- $\overline{R}_{\Gamma} = \overline{P}/\overline{I}_{\Gamma}$, with $\overline{P} = P/(x_0) \cong K[[x_1, \dots, x_e]]$, $\overline{I}_{\Gamma} = \frac{I_{\Gamma} + (x_0)}{(x_0)}$.
- If $Q = K[x_1, \dots, x_e] \cong gr(\overline{P})$, then $gr(\overline{R}_{\Gamma}) = Q/\overline{I}_{\Gamma}^*$, where \overline{I}_{Γ}^* is the ideal of initial forms of \overline{I}_{Γ} .

- $(t^{g_0}) \subseteq R_{\Gamma}$ is the unique monomial minimal reduction of the maximal ideal.
- $\overline{R}_{\Gamma} = R_{\Gamma}/(t^{g_0})$ is an artinian local K-algebra with $\ell(R_{\Gamma}) = g_0$.
- $\overline{R}_{\Gamma} = \overline{P}/\overline{I}_{\Gamma}$, with $\overline{P} = P/(x_0) \cong K[[x_1, \dots, x_e]]$, $\overline{I}_{\Gamma} = \frac{I_{\Gamma} + (x_0)}{(x_0)}$.
- If $Q = K[x_1, \dots, x_e] \cong gr(\overline{P})$, then $gr(\overline{R}_{\Gamma}) = Q/\overline{I}_{\Gamma}^*$, where \overline{I}_{Γ}^* is the ideal of initial forms of \overline{I}_{Γ} .
- If $J_{\Gamma} = in_{revlex}(\overline{I}_{\Gamma}^*) \subseteq Q$, then

$$\rho(\Gamma) = \mu(I_{\Gamma}) = \mu(\overline{I}_{\Gamma}) \le \mu(\overline{I}_{\Gamma}^*) \le \mu(J_{\Gamma}).$$

$$\Gamma = \langle 7, 9, 12, 15 \rangle.$$

$$\Gamma = \langle 7, 9, 12, 15 \rangle.$$

$$I_{\Gamma} = (w^3 - xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[w, x, y, z]]$$

$$\begin{split} &\Gamma = \langle 7, 9, 12, 15 \rangle. \\ &I_{\Gamma} = (w^3 - xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[w, x, y, z]] \\ &\text{We can compute } \bar{I}_{\Gamma} \text{ by going modulo } w: \\ &\bar{I}_{\Gamma} = (xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[x, y, z]] \end{split}$$

$$\begin{split} &\Gamma = \langle 7, 9, 12, 15 \rangle. \\ &I_{\Gamma} = (w^3 - xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[w, x, y, z]] \\ &\text{We can compute } \overline{I}_{\Gamma} \text{ by going modulo } w: \\ &\overline{I}_{\Gamma} = (xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[x, y, z]] \\ &\text{Since } x^4 = (x(x^3 - yz) - z(xy))^* \text{ we have } \\ &\overline{I}_{\Gamma}^* = (xy, y^2 - xz, yz, z^2, x^4) \subseteq K[x, y, z] \end{split}$$

$$\begin{split} &\Gamma = \langle 7, 9, 12, 15 \rangle. \\ &I_{\Gamma} = (w^3 - xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[w, x, y, z]] \\ &\text{We can compute } \overline{I}_{\Gamma} \text{ by going modulo } w: \\ &\overline{I}_{\Gamma} = (xy, y^2 - xz, x^3 - yz, x^2y - z^2) \subseteq K[[x, y, z]] \\ &\text{Since } x^4 = (x(x^3 - yz) - z(xy))^* \text{ we have } \\ &\overline{I}_{\Gamma}^* = (xy, y^2 - xz, yz, z^2, x^4) \subseteq K[x, y, z] \\ &\text{And similarly, we can see that } x^2z \in J_{\Gamma}, \text{ thus } \\ &J_{\Gamma} = (xy, y^2, yz, z^2, x^4, x^2z) \subseteq K[x, y, z] \end{split}$$

 J_{Γ} is a monomial ideal in $K[x_1,\ldots,x_e]$ with colength g_0 .

 J_{Γ} is a monomial ideal in $K[x_1,\ldots,x_e]$ with colength g_0 .

$\mathsf{Theorem}$

$$J_{\Gamma} \subseteq (x_1, \dots, x_{e-1})^2 + x_e^q(x_1, \dots, x_e)$$
, where $q = \left\lfloor \frac{g_0 - 1}{g_e - g_0} \right\rfloor$. Moreover, $HS(Q/J_{\Gamma}, d) \le 1 + d(g_e - g_0)$ for all $d \in \mathbb{N}$.

The value $g_e - g_0$ is exactly the value w in Problem 2!

 J_{Γ} is a monomial ideal in $K[x_1,\ldots,x_e]$ with colength g_0 .

Theorem

$$J_{\Gamma} \subseteq (x_1, \dots, x_{e-1})^2 + x_e^q(x_1, \dots, x_e)$$
, where $q = \left\lfloor \frac{g_0 - 1}{g_e - g_0} \right\rfloor$. Moreover, $HS(Q/J_{\Gamma}, d) \le 1 + d(g_e - g_0)$ for all $d \in \mathbb{N}$.

The value $g_e - g_0$ is exactly the value w in Problem 2!

Problem 2 (extended)

Let $S = K[x_1, ..., x_e]$, and $I \subseteq S$ be a homogeneous ideal such that $\ell(S/I) < \infty$, and $w \in \mathbb{N}$.

Find upper bounds for $\mu(I)$ under the assumption that $HS(S/I,d) \leq 1 + dw$ for all $d \in \mathbb{N}$.

A lexsegment ideal $L \subseteq S$ is a monomial ideal such that, for each d, the graded component $[L]_d$ is spanned by the first $\dim_K[L]_d$ monomials of $[S]_d$, with respect to the lexicographic order. For any homogeneous ideal $I \subseteq S$, there exists a unique lexsegment ideal, denoted by $Lex(I) \subseteq S$, such that HF(I) = HF(Lex(I)).

A lexsegment ideal $L \subseteq S$ is a monomial ideal such that, for each d, the graded component $[L]_d$ is spanned by the first $\dim_K [L]_d$ monomials of $[S]_d$, with respect to the lexicographic order. For any homogeneous ideal $I \subseteq S$, there exists a unique lexsegment ideal, denoted by $Lex(I) \subseteq S$, such that HF(I) = HF(Lex(I)).

Theorem [Bigatti-Hulett-Pardue]

$$\mu(I) \leq \mu(Lex(I)).$$

A lexsegment ideal $L \subseteq S$ is a monomial ideal such that, for each d, the graded component $[L]_d$ is spanned by the first $\dim_K [L]_d$ monomials of $[S]_d$, with respect to the lexicographic order. For any homogeneous ideal $I \subseteq S$, there exists a unique lexsegment ideal, denoted by $Lex(I) \subseteq S$, such that HF(I) = HF(Lex(I)).

Theorem [Bigatti-Hulett-Pardue]

$$\mu(I) \leq \mu(Lex(I)).$$

If $L \subseteq S$ is a lex ideal, consider $\hat{L} = \frac{L + (x_e)}{x_e} \subseteq \hat{S} = K[x_1, \dots, x_{e-1}]$. Then $\mu(L)$ is related to $\ell(\hat{S}/\hat{L})$. By studying this length we obtain:

Theorem

$$\mu(I) \leq w \cdot 9^{\sqrt{2w}}$$
, and thus $C(w) \leq w \cdot 9^{\sqrt{2w}}$.

Problem 1 (extended)

Find upper bounds for $\mu(I)$ under the assumption that $\ell(S/I)=m$.

Problem 1 (extended)

Find upper bounds for $\mu(I)$ under the assumption that $\ell(S/I) = m$.

Let $L = L(e, m) \subseteq K[x_1, \ldots, x_e] = P$ be the unique ideal such that P/L is artinian of length m, $L = (x_1, \ldots, x_e)^{r+1} + \tilde{L}$ and \tilde{L} is generated by the first s monomials of degree r in the lex ordering.

$$L(3,16) = (x, y, z)^4 + (x^3, x^2y, x^2z, xy^2) \subseteq K[x, y, z].$$

Problem 1 (extended)

Find upper bounds for $\mu(I)$ under the assumption that $\ell(S/I)=m$.

Let $L = L(e, m) \subseteq K[x_1, \ldots, x_e] = P$ be the unique ideal such that P/L is artinian of length m, $L = (x_1, \ldots, x_e)^{r+1} + \tilde{L}$ and \tilde{L} is generated by the first s monomials of degree r in the lex ordering.

Example

$$L(3,16) = (x, y, z)^4 + (x^3, x^2y, x^2z, xy^2) \subseteq K[x, y, z].$$

Let $\ell(e, m) = \mu(L(e, m))$.

Theorem [Elias, Robbiano, Valla, 1991]

If $\ell(P/I) = m$ then $\mu(I) \le \ell(e, m)$.

An explicit formula for $\ell(e, m)$

Let n, d be positive integers.

There exist unique integers $n_d > n_{d_1} > \ldots > n_j \geq j \geq 1$ such that

$$n = \binom{n_d}{d} + \ldots + \binom{n_j}{j}.$$

Define

$$n^{\langle d \rangle} = \binom{n_d+1}{d+1} + \ldots + \binom{n_j+1}{j+1}.$$

Theorem [Elias, Robbiano, Valla, 1991]

Let $e, m \in \mathbb{N}$ be such that $4 \le e+1 \le m$, let r be the unique integer such that $\binom{e+r-1}{r-1} \le m < \binom{e+r}{r}$, and let $s = m - \binom{e+r-1}{r-1}$. Then $\ell(e,m) = \binom{e+r-1}{r-1} + s^{< r> - s$.

We are left with a question: is our context general enough to achieve this bound?

We are left with a question: is our context general enough to achieve this bound?

The answer is yes...

Theorem

- **1** $B(e, m) = \ell(e, m)$ if $m e \le 6$.
- ② For every $\delta = m e$ fixed, $B(e, m) = \ell(e, m)$ for m >> 0.

We are left with a question: is our context general enough to achieve this bound?

The answer is yes...

Theorem

- **1** $B(e, m) = \ell(e, m)$ if $m e \le 6$.
- ② For every $\delta = m e$ fixed, $B(e, m) = \ell(e, m)$ for m >> 0.

...and no (depending on e and m).

Theorem

- **1** $B(e, m) < \ell(e, m)$ if m e = 7 and e = 3, 4, 5.
- ② For every fixed e, $B(e, m) < \ell(e, m)$ for m >> 0.

$$\Gamma = \langle 9, 10, 12, 13 \rangle \text{, } e = 3, m = g_0 = 9.$$

$$\begin{split} &\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, m = g_0 = 9. \\ &I_{\Gamma} = \left(z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y\right) \subseteq K[[w, x, y, z]]. \end{split}$$

$$\begin{split} \Gamma &= \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9. \\ I_{\Gamma} &= \left(z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y\right) \subseteq K[[w, x, y, z]]. \\ \bar{I}_{\Gamma} &= \left(z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3\right) \subseteq K[[x, y, z]]. \end{split}$$

$$\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9.$$

$$I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]].$$

$$\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]].$$

$$J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z].$$
On the other hand $L(3, 9) = (x^2) + (x, y, z)^3$.

$$\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9.$$

$$I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]].$$

$$\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]].$$

$$J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z].$$
On the other hand $L(3, 9) = (x^2) + (x, y, z)^3$.
$$\mu(I_{\Gamma}) = \mu(J_{\Gamma}) = \mu(L(e, m)).$$

Example

$$\begin{split} &\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9. \\ &I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]]. \\ &\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{On the other hand } L(3, 9) = (x^2) + (x, y, z)^3. \\ &\mu(I_{\Gamma}) = \mu(J_{\Gamma}) = \mu(L(e, m)). \end{split}$$

$$\Gamma = \langle 10, 11, 13, 14 \rangle, e = 3, m = g_0 = 10.$$

Example

$$\begin{split} &\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9. \\ &I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]]. \\ &\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{On the other hand } L(3, 9) = (x^2) + (x, y, z)^3. \\ &\mu(I_{\Gamma}) = \mu(J_{\Gamma}) = \mu(L(e, m)). \end{split}$$

$$\begin{split} \Gamma &= \langle 10, 11, 13, 14 \rangle, e = 3, m = g_0 = 10. \\ I_{\Gamma} &= \left(z^3 - w^2 x^2, y z^2 - w^3 x, y^2 z - w^4, y^3 - x z^2, x y - w z, x^2 z - w y^2, x^3 - w^2 y \right) \subseteq K[[w, x, y, z]]. \end{split}$$

Example

$$\begin{split} &\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9. \\ &I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]]. \\ &\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{On the other hand } L(3, 9) = (x^2) + (x, y, z)^3. \\ &\mu(I_{\Gamma}) = \mu(J_{\Gamma}) = \mu(L(e, m)). \end{split}$$

$$\begin{split} &\Gamma = \langle 10, 11, 13, 14 \rangle, e = 3, \, m = g_0 = 10. \\ &I_{\Gamma} = (z^3 - w^2 x^2, y z^2 - w^3 x, y^2 z - w^4, y^3 - x z^2, x y - w z, x^2 z - w y^2, x^3 - w^2 y) \subseteq K[[w, x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{But } L(3, 10) = (x, y, z)^3, \end{split}$$

Example

$$\begin{split} &\Gamma = \langle 9, 10, 12, 13 \rangle, \ e = 3, \ m = g_0 = 9. \\ &I_{\Gamma} = (z^3 - wx^3, yz^2 - w^2x^2, y^2z - w^3x, y^3 - w^4, xz^2 - w^4, xy - wz, x^2z - wy^2, x^3 - w^2y) \subseteq K[[w, x, y, z]]. \\ &\bar{I}_{\Gamma} = (z^3, yz^2, y^2z, y^3, xz^2, xy, x^2z, x^3) \subseteq K[[x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{On the other hand } L(3, 9) = (x^2) + (x, y, z)^3. \\ &\mu(I_{\Gamma}) = \mu(J_{\Gamma}) = \mu(L(e, m)). \end{split}$$

$$\begin{split} &\Gamma = \langle 10, 11, 13, 14 \rangle, e = 3, \, m = g_0 = 10. \\ &I_{\Gamma} = (z^3 - w^2 x^2, yz^2 - w^3 x, y^2 z - w^4, y^3 - xz^2, xy - wz, x^2 z - wy^2, x^3 - w^2 y) \subseteq K[[w, x, y, z]]. \\ &J_{\Gamma} = (xy) + (x, y, z)^3 \subseteq K[x, y, z]. \\ &\text{But } L(3, 10) = (x, y, z)^3, \text{and } \mu(J_{\Gamma}) < \mu(L(e, m)). \end{split}$$

Thank you for your attention!