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Notation

@ D: commutative integral domain with quotient field K.
e Mu(D): ring of n x n matrices with entries in D. (Similar for M,(K)).

“Classical” ring of IVP: Intx(D) = {f € K[x] | f(a) € D for all a € D} -
well understood.

What about plugging in elements in some D-algebra? In particular
matrices over D7
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Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:
Intk (Mn(D)) = {f € K[x] | f(A) € My(D) for all A€ M,(D)}.

Form a subring of K[x]. Studied by Frisch, Peruginelli, Werner, ...
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Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:
Intk (Mn(D)) = {f € K[x] | f(A) € My(D) for all A€ M,(D)}.

Form a subring of K[x|. Studied by Frisch, Peruginelli, Werner, ...

2. Matrix coefficient polynomials:

IntMn(K)(M,,(D)) =
{f € Mp(K)[x] | F(A) € Mp(D) for all A€ Mn(D)}.

Where for f = . cix', we define f(A) = 3. ¢;A’ (right evaluation).

First studied by Werner (2012). Natural question: Do they form a
ring? What is their structure?
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Structure of Inty, (x)(Ma(D))

Caution

Right evaluation is not a ring homomorphism in the noncommutative
setting!

For f,g € My(K)[x] and A € M,(D), it could happen that
(7g)(A) # f(A)g(A),
but we still have

(f + &)(A) = f(A) + g(A).

So Inty,(k)(Mn(D)) is closed under addition, but what about
multiplication? l.e. is it a subring of M,(K)[x]?
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Structure of Inty, (x)(Ma(D))

Theorem (Werner, 2012)
Intp,(k)(Mn(D)) is a subring of M, (K)[x].
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For f,g € Inty,(k)(Mn(D)), need to show that fg is also integer-valued.
While (fg)(A) # f(A)g(A), we still have (fg)(A) = (fg(A))(A), so only
need to consider the products fC for C € M,(D).
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Theorem (Werner, 2012)
Intym, (k) (Ma(D)) is a subring of M(K)[x]. J

For f, g € Inty,(k)(Mn(D)), need to show that fg is also integer-valued.
While (fg)(A) # f(A)g(A), we still have (fg)(A) = (fg(A))(A), so only
need to consider the products fC for C € M,(D).

If C is a unit, everything works out nicely; same for sums of units. As
every matrix (n > 2) is a sum of units, we are done.
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Structure of Inty, (x)(Ma(D))

Theorem (Frisch, 2013)

Intk(Mn(D)) Intx(Mn(D)) - --
Intk(Ma(D)) Intx(Mu(D)) - --

IntMn(K)(M,,(D)) =

Intk(My(D)) Int(My(D)) -

Intx(Mn(D))
Intx(Mn(D))

Intic (Mo(D)).

f Matrix Algebras
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Upper triangular matrices

Theorem (Frisch, 2017)

Let T,(D) denote the ring of n x n upper triangular matrices. Then
Intr, (k) (Ta(D)) = {f € To(K)[x] | f(A) € Ta(D) for all A€ To(D)} is a

subring of T,(K)[x] and is isomorphic to

_IntK(T,,(D)) IntK(T,,_l(D)) oo |ntK(T2(D)) IntK(D)_
0 |ntK(Tn_1(D)) 0009 |ntK(T2(D)) IntK(D)
0 0 s00 |ntK(T2(D)) IntK(D)
o 0 0 Inty (D)
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Block triangular matrices

Theorem (Sedighi Hafshejani, Naghipour, Rismanchian, 2019)

Let 0 < s < n and denote by sLn(D) the ring of square matrices with
entries in D which are of the form

S n—s
_,_H /—/\ﬁ_
0 =
00 *

0 0 0
00 - 0 % - x|

Then Int,; (k)(sLa(D)) is a subring of sLn(K)[x].
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Question

For which other subrings of M,(D) can we do similar things and obtain
rings of integer-valued polynomials?
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Definition of M<(D)

M,(D), T,(D) and sLn(D) are all instances of the following construction:
Fix certain positions (/, /) and take all matrices whose only nonzero entries
are in these positions. What possible patterns for these positions are

allowed?
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Definition of M<(D)

Mu(D), Tn(D) and sL,(D) are all instances of the following construction:
Fix certain positions (/, /) and take all matrices whose only nonzero entries
are in these positions. What possible patterns for these positions are
allowed?

Definition

Let X be a preorder on {1,...,n}, i.e. a reflexive and transitive relation.
Define a subring M<(D) of M,(D) by setting

M= (D) = {(aj) € Ma(D) | 2 #0 =i Zj}.
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A bigger example
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A useful property of M<(D)

Lemma

Let = be a preorder on {1,...,n} and A€ M<(D). Then A can be
written as A = B + C where B is a sum of units and C is a diagonal
matrix whose only nonzero entries are in positions (h, h) where the
equivalence class [h]~. is a singleton.
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A useful property of M<(D)

Lemma

Let = be a preorder on {1,...,n} and A€ M<(D). Then A can be
written as A = B + C where B is a sum of units and C is a diagonal
matrix whose only nonzero entries are in positions (h, h) where the
equivalence class [h]~. is a singleton.

Proof.

We get everything off the diagonal from elementary matrices and square
matrices of size > 2 are sum of units. The only thing remaining is exactly
the matrix C claimed above. O

v
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Inty_ (k) (M<(D)) is a ring

Theorem
Let = be any preorder on {1,...,n} and let

Inty_ (k) (M<(D)) = {f € M<(K)[x] | f(A) € M<(D) for all A€ M<(D)}.
Then Inty_ (k) (M<(D)) is a subring of M(K)[x].
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Main proof ingredients:

O Suffices to show that Inty_k)(M<(D)) is closed under multiplication
by elements of M<(D) from the right.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras

14/18



Inty_ (k) (M<(D)) is a ring

Theorem

Let = be any preorder on {1,...,n} and let

Inty_ (k) (M<(D)) = {f € M<(K)[x] | f(A) € M<(D) for all A€ M<(D)}.
Then Inty_ (k) (M<(D)) is a subring of M(K)[x].

Main proof ingredients:
O Suffices to show that Inty_k)(M<(D)) is closed under multiplication
by elements of M<(D) from the right.
© M<(K)[x] = M<(K([x]); give characterization of

f = (fin) € Intm_ (k)(M<(D)) in terms of the scalar polynomials fj.
(which is particularly nice if [h].) is singleton).

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras

14/18



Inty_ (k) (M<(D)) is a ring

Theorem

Let = be any preorder on {1,...,n} and let

Intpm_ (k) (M<(D)) = {f € Ms(K)[x] | f(A) € Mx(D) for all A€ M<(D)}.
Then Inty_ (k) (M= (D)) is a subring of M<(K)[x].

Main proof ingredients:
O Suffices to show that Inty_k)(M<(D)) is closed under multiplication
by elements of M<(D) from the right.
© M<(K)[x] = M<(K([x]); give characterization of
f = (fin) € Intm_ (k)(M<(D)) in terms of the scalar polynomials fj.
(which is particularly nice if [h].) is singleton).
© Every element A of M<(D) can be written as A= B + C, where B is

a sum of units and C is a diagonal matrix whose nonzero entries are
only in positions (h, h) where [h]. is a singleton.
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The structure of Inty_x)(M<(D))

Knowing that Inty_ (x)(M<(D)) is a ring, one can also obtain a nicer
characterization of its elements in terms of scalar-coefficient integer-valued
polynomials.
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Connection to null-polynomials

Let f € M<(K)[x] and write f = g/d for g € M<(D)[x] and d € D. Then

f € Intm_(k)(M<(D)) & &(A) = 0 € M<(D/dD) for all A€ M<(D/dD)
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Connection to null-polynomials

Let f € M<(K)[x] and write f = g/d for g € M<(D)[x] and d € D. Then
f € Inty_ (k) (M<(D)) < &(A) = 0 € M<(D/dD) for all A € M<(D/dD)

For any finite (possibly noncommutative) ring R, there are nonzero
polynomials vanishing everywhere (null-polynomials). Consider the set of
them: N(R) = {f € R[x] | f(r) =0 for all r € R}. For which R is this a
two-sided ideal of R[x]?
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Connection to null-polynomials

Let f € M<(K)[x] and write f = g/d for g € M<(D)[x] and d € D. Then
f € Inty_ (1) (M<(D)) < &(A) = 0 € M<(D/dD) for all A € M(D/dD)

For any finite (possibly noncommutative) ring R, there are nonzero
polynomials vanishing everywhere (null-polynomials). Consider the set of
them: N(R) = {f € R[x] | f(r) =0 for all r € R}. For which R is this a
two-sided ideal of R[x]?

True for many classes: semisimple, odd order, ... (Werner, 2013).
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Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R)
is a two sided ideal.
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Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R)
is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain
commutative finite rings.
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Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R)
is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain
commutative finite rings.

Theorem
Let =X be any preorder and S any commutative ring. Then the set
N(M<(S)) is a two-sided ideal of M<(S)[x].
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Conclusion

@ For any preorder 3 on {1,...,n}, define rings M<(D) C M,(D) by
restricting entries in certain positions to be 0.
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Conclusion

@ For any preorder 3 on {1,...,n}, define rings M<(D) C M,(D) by
restricting entries in certain positions to be 0.

@ Integer-valued polynomials IntMi(K)(Mj(D)) form a subring of
M<(K)[x].

@ There is a characterization of Inty_ (x)(M<(D)) in terms of
polynomials with coefficients in K.~

@ The set of null-polynomials N(M<(S)) is an ideal for all commutative
rings S.

@ What about restricting the entries to be in some ideal of D instead of
zero?

Thank you for your attention!
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