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Notation

D: commutative integral domain with quotient field K .

Mn(D): ring of n× n matrices with entries in D. (Similar for Mn(K )).

“Classical” ring of IVP: IntK (D) = {f ∈ K [x ] | f (a) ∈ D for all a ∈ D} -
well understood.

What about plugging in elements in some D-algebra? In particular
matrices over D?
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Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:

IntK (Mn(D)) = {f ∈ K [x ] | f (A) ∈ Mn(D) for all A ∈ Mn(D)}.

Form a subring of K [x ]. Studied by Frisch, Peruginelli, Werner, . . .

2. Matrix coefficient polynomials:

IntMn(K)(Mn(D)) =

{f ∈ Mn(K )[x ] | f (A) ∈ Mn(D) for all A ∈ Mn(D)}.

Where for f =
∑

i cix
i , we define f (A) =

∑
i ciA

i (right evaluation).
First studied by Werner (2012). Natural question: Do they form a
ring? What is their structure?
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Structure of IntMn(K )(Mn(D))

Caution

Right evaluation is not a ring homomorphism in the noncommutative
setting!

For f , g ∈ Mn(K )[x ] and A ∈ Mn(D), it could happen that

(fg)(A) ̸= f (A)g(A),

but we still have

(f + g)(A) = f (A) + g(A).

So IntMn(K)(Mn(D)) is closed under addition, but what about
multiplication? I.e. is it a subring of Mn(K )[x ]?
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Structure of IntMn(K )(Mn(D))

Theorem (Werner, 2012)

IntMn(K)(Mn(D)) is a subring of Mn(K )[x ].

For f , g ∈ IntMn(K)(Mn(D)), need to show that fg is also integer-valued.
While (fg)(A) ̸= f (A)g(A), we still have (fg)(A) = (fg(A))(A), so only
need to consider the products fC for C ∈ Mn(D).
If C is a unit, everything works out nicely; same for sums of units. As
every matrix (n ≥ 2) is a sum of units, we are done.
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Structure of IntMn(K )(Mn(D))

Theorem (Frisch, 2013)

IntMn(K)(Mn(D)) ∼=


IntK (Mn(D)) IntK (Mn(D)) · · · IntK (Mn(D))
IntK (Mn(D)) IntK (Mn(D)) · · · IntK (Mn(D))

...
... · · ·

...
IntK (Mn(D)) IntK (Mn(D)) · · · IntK (Mn(D)).


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Upper triangular matrices

Theorem (Frisch, 2017)

Let Tn(D) denote the ring of n × n upper triangular matrices. Then
IntTn(K)(Tn(D)) = {f ∈ Tn(K )[x ] | f (A) ∈ Tn(D) for all A ∈ Tn(D)} is a
subring of Tn(K )[x ] and is isomorphic to

IntK (Tn(D)) IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (D)
0 IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (D)

. . .

0 0 · · · IntK (T2(D)) IntK (D)
0 0 · · · 0 IntK (D)

 .
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Block triangular matrices

Theorem (Sedighi Hafshejani, Naghipour, Rismanchian, 2019)

Let 0 ≤ s ≤ n and denote by sLn(D) the ring of square matrices with
entries in D which are of the form



∗ ∗ · · · ∗ ∗ · · · ∗
0 ∗ · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

0 0 · · · ∗ ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
...

...
...

...
...

0 0 · · · 0 ∗ · · · ∗



s︷ ︸︸ ︷ n − s︷ ︸︸ ︷

.

Then Int
sLn(K)(sLn(D)) is a subring of sLn(K )[x ].
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Question

For which other subrings of Mn(D) can we do similar things and obtain
rings of integer-valued polynomials?
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Definition of M≾(D)

Mn(D), Tn(D) and sLn(D) are all instances of the following construction:
Fix certain positions (i , j) and take all matrices whose only nonzero entries
are in these positions. What possible patterns for these positions are
allowed?

Definition

Let ≾ be a preorder on {1, . . . , n}, i.e. a reflexive and transitive relation.
Define a subring M≾(D) of Mn(D) by setting

M≾(D) = {(aij) ∈ Mn(D) | aij ̸= 0 ⇒ i ≾ j}.
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Example



∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ 0 ∗ 0 0 ∗ 0 0 ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 0 0 0 0 ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 0 0 0 0 ∗ 0 0 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0 ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 0 0 0 0 ∗


∼=



∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗



Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 11 / 18



Example



∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ 0 ∗ 0 0 ∗ 0 0 ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 0 0 0 0 ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 0 0 0 0 ∗ 0 0 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0 ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 ∗ ∗
0 0 0 ∗ 0 0 0 0 0 ∗


∼=



∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗



Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 11 / 18



A bigger example



∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 0 0 0 0 0 ∗ 0 0 0
0 0 0 ∗ ∗ 0 0 0 0 0 0 ∗ 0 0 0
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗


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A useful property of M≾(D)

Lemma

Let ≾ be a preorder on {1, . . . , n} and A ∈ M≾(D). Then A can be
written as A = B + C where B is a sum of units and C is a diagonal
matrix whose only nonzero entries are in positions (h, h) where the
equivalence class [h]∼ is a singleton.

Proof.

We get everything off the diagonal from elementary matrices and square
matrices of size ≥ 2 are sum of units. The only thing remaining is exactly
the matrix C claimed above.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 13 / 18



A useful property of M≾(D)

Lemma

Let ≾ be a preorder on {1, . . . , n} and A ∈ M≾(D). Then A can be
written as A = B + C where B is a sum of units and C is a diagonal
matrix whose only nonzero entries are in positions (h, h) where the
equivalence class [h]∼ is a singleton.

Proof.

We get everything off the diagonal from elementary matrices and square
matrices of size ≥ 2 are sum of units. The only thing remaining is exactly
the matrix C claimed above.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 13 / 18



IntM≾(K )(M≾(D)) is a ring

Theorem

Let ≾ be any preorder on {1, . . . , n} and let
IntM≾(K)(M≾(D)) = {f ∈ M≾(K )[x ] | f (A) ∈ M≾(D) for all A ∈ M≾(D)}.
Then IntM≾(K)(M≾(D)) is a subring of M≾(K )[x ].

Main proof ingredients:

1 Suffices to show that IntM≾(K)(M≾(D)) is closed under multiplication

by elements of M≾(D) from the right.

2 M≾(K )[x ] ∼= M≾(K [x ]); give characterization of
f = (fih) ∈ IntM≾(K)(M≾(D)) in terms of the scalar polynomials fih.

(which is particularly nice if [h]∼) is singleton).

3 Every element A of M≾(D) can be written as A = B + C , where B is
a sum of units and C is a diagonal matrix whose nonzero entries are
only in positions (h, h) where [h]∼ is a singleton.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 14 / 18



IntM≾(K )(M≾(D)) is a ring

Theorem

Let ≾ be any preorder on {1, . . . , n} and let
IntM≾(K)(M≾(D)) = {f ∈ M≾(K )[x ] | f (A) ∈ M≾(D) for all A ∈ M≾(D)}.
Then IntM≾(K)(M≾(D)) is a subring of M≾(K )[x ].

Main proof ingredients:

1 Suffices to show that IntM≾(K)(M≾(D)) is closed under multiplication

by elements of M≾(D) from the right.

2 M≾(K )[x ] ∼= M≾(K [x ]); give characterization of
f = (fih) ∈ IntM≾(K)(M≾(D)) in terms of the scalar polynomials fih.

(which is particularly nice if [h]∼) is singleton).

3 Every element A of M≾(D) can be written as A = B + C , where B is
a sum of units and C is a diagonal matrix whose nonzero entries are
only in positions (h, h) where [h]∼ is a singleton.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 14 / 18



IntM≾(K )(M≾(D)) is a ring

Theorem

Let ≾ be any preorder on {1, . . . , n} and let
IntM≾(K)(M≾(D)) = {f ∈ M≾(K )[x ] | f (A) ∈ M≾(D) for all A ∈ M≾(D)}.
Then IntM≾(K)(M≾(D)) is a subring of M≾(K )[x ].

Main proof ingredients:

1 Suffices to show that IntM≾(K)(M≾(D)) is closed under multiplication

by elements of M≾(D) from the right.

2 M≾(K )[x ] ∼= M≾(K [x ]); give characterization of
f = (fih) ∈ IntM≾(K)(M≾(D)) in terms of the scalar polynomials fih.

(which is particularly nice if [h]∼) is singleton).

3 Every element A of M≾(D) can be written as A = B + C , where B is
a sum of units and C is a diagonal matrix whose nonzero entries are
only in positions (h, h) where [h]∼ is a singleton.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 14 / 18



IntM≾(K )(M≾(D)) is a ring

Theorem

Let ≾ be any preorder on {1, . . . , n} and let
IntM≾(K)(M≾(D)) = {f ∈ M≾(K )[x ] | f (A) ∈ M≾(D) for all A ∈ M≾(D)}.
Then IntM≾(K)(M≾(D)) is a subring of M≾(K )[x ].

Main proof ingredients:

1 Suffices to show that IntM≾(K)(M≾(D)) is closed under multiplication

by elements of M≾(D) from the right.

2 M≾(K )[x ] ∼= M≾(K [x ]); give characterization of
f = (fih) ∈ IntM≾(K)(M≾(D)) in terms of the scalar polynomials fih.

(which is particularly nice if [h]∼) is singleton).

3 Every element A of M≾(D) can be written as A = B + C , where B is
a sum of units and C is a diagonal matrix whose nonzero entries are
only in positions (h, h) where [h]∼ is a singleton.

Valentin Havlovec (TU Graz) IVP Over Subrings of Matrix Algebras 14 / 18



The structure of IntM≾(K )(M≾(D))

Knowing that IntM≾(K)(M≾(D)) is a ring, one can also obtain a nicer
characterization of its elements in terms of scalar-coefficient integer-valued
polynomials.
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Connection to null-polynomials

Let f ∈ M≾(K )[x ] and write f = g/d for g ∈ M≾(D)[x ] and d ∈ D. Then

f ∈ IntM≾(K)(M≾(D)) ⇔ ḡ(A) = 0 ∈ M≾(D/dD) for all A ∈ M≾(D/dD)

For any finite (possibly noncommutative) ring R, there are nonzero
polynomials vanishing everywhere (null-polynomials). Consider the set of
them: N(R) = {f ∈ R[x ] | f (r) = 0 for all r ∈ R}. For which R is this a
two-sided ideal of R[x ]?
True for many classes: semisimple, odd order, . . . (Werner, 2013).
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Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R)
is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain
commutative finite rings.

Theorem

Let ≾ be any preorder and S any commutative ring. Then the set
N(M≾(S)) is a two-sided ideal of M≾(S)[x ].
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Conclusion

For any preorder ≾ on {1, . . . , n}, define rings M≾(D) ⊂ Mn(D) by
restricting entries in certain positions to be 0.

Integer-valued polynomials IntM≾(K)(M≾(D)) form a subring of

M≾(K )[x ].

There is a characterization of IntM≾(K)(M≾(D)) in terms of
polynomials with coefficients in K .

The set of null-polynomials N(M≾(S)) is an ideal for all commutative
rings S .

What about restricting the entries to be in some ideal of D instead of
zero?

Thank you for your attention!
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