Integer-valued Polynomials Over Subrings of Matrix Algebras

Valentin Havlovec

Graz University of Technology

AMS-UMI Joint Meeting, Palermo, 2024

• D: commutative integral domain with quotient field K.

• $M_n(D)$: ring of $n \times n$ matrices with entries in D. (Similar for $M_n(K)$).

"Classical" ring of IVP: $Int_{\mathcal{K}}(D) = \{f \in \mathcal{K}[x] \mid f(a) \in D \text{ for all } a \in D\}$ -well understood.

- D: commutative integral domain with quotient field K.
- $M_n(D)$: ring of $n \times n$ matrices with entries in D. (Similar for $M_n(K)$).

"Classical" ring of IVP: Int_K(D) = {f ∈ K[x] | f(a) ∈ D for all a ∈ D} well understood.

- D: commutative integral domain with quotient field K.
- $M_n(D)$: ring of $n \times n$ matrices with entries in D. (Similar for $M_n(K)$).

"Classical" ring of IVP: $Int_{\mathcal{K}}(D) = \{f \in \mathcal{K}[x] \mid f(a) \in D \text{ for all } a \in D\}$ -well understood.

- D: commutative integral domain with quotient field K.
- $M_n(D)$: ring of $n \times n$ matrices with entries in D. (Similar for $M_n(K)$).

"Classical" ring of IVP: $Int_{\mathcal{K}}(D) = \{f \in \mathcal{K}[x] \mid f(a) \in D \text{ for all } a \in D\}$ -well understood.

Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:

 $\operatorname{Int}_{\mathcal{K}}(\operatorname{\mathsf{M}}_n(D)) = \{ f \in \mathcal{K}[x] \mid f(A) \in \operatorname{\mathsf{M}}_n(D) \text{ for all } A \in \mathcal{M}_n(D) \}.$

Form a subring of K[x]. Studied by Frisch, Peruginelli, Werner, ... Matrix coefficient polynomials:

$$\begin{split} \mathsf{Int}_{\mathsf{M}_n(K)}(\mathsf{M}_n(D)) &= \\ & \{f \in \mathsf{M}_n(K)[x] \mid f(A) \in \mathsf{M}_n(D) \text{ for all } A \in M_n(D) \}. \end{split}$$

Where for $f = \sum_{i} c_{i}x^{i}$, we define $f(A) = \sum_{i} c_{i}A^{i}$ (right evaluation). First studied by Werner (2012). Natural question: Do they form a ring? What is their structure? Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:

 $\operatorname{Int}_{\mathcal{K}}(\operatorname{\mathsf{M}}_n(D)) = \{ f \in \mathcal{K}[x] \mid f(A) \in \operatorname{\mathsf{M}}_n(D) \text{ for all } A \in \mathcal{M}_n(D) \}.$

Form a subring of K[x]. Studied by Frisch, Peruginelli, Werner, ... 2. Matrix coefficient polynomials:

$$\begin{split} \mathsf{Int}_{\mathsf{M}_n(\mathcal{K})}(\mathsf{M}_n(D)) &= \\ \{f \in \mathsf{M}_n(\mathcal{K})[x] \mid f(A) \in \mathsf{M}_n(D) \text{ for all } A \in \mathcal{M}_n(D) \}. \end{split}$$

Where for $f = \sum_{i} c_{i}x^{i}$, we define $f(A) = \sum_{i} c_{i}A^{i}$ (right evaluation). First studied by Werner (2012). Natural question: Do they form a ring? What is their structure? Two flavours of matrix integer-valued polynomials

1. Scalar coefficient polynomials:

 $\operatorname{Int}_{\mathcal{K}}(\operatorname{\mathsf{M}}_n(D)) = \{ f \in \mathcal{K}[x] \mid f(A) \in \operatorname{\mathsf{M}}_n(D) \text{ for all } A \in \mathcal{M}_n(D) \}.$

Form a subring of K[x]. Studied by Frisch, Peruginelli, Werner, ... 2. Matrix coefficient polynomials:

$$\begin{split} \mathsf{Int}_{\mathsf{M}_n(\mathcal{K})}(\mathsf{M}_n(D)) &= \\ \{f \in \mathsf{M}_n(\mathcal{K})[x] \mid f(A) \in \mathsf{M}_n(D) \text{ for all } A \in \mathcal{M}_n(D) \}. \end{split}$$

Where for $f = \sum_{i} c_{i}x^{i}$, we define $f(A) = \sum_{i} c_{i}A^{i}$ (right evaluation). First studied by Werner (2012). Natural question: Do they form a ring? What is their structure?

Caution

Right evaluation is not a ring homomorphism in the noncommutative setting!

For $f, g \in M_n(K)[x]$ and $A \in M_n(D)$, it could happen that

 $(fg)(A) \neq f(A)g(A),$

but we still have

$$(f+g)(A) = f(A) + g(A).$$

So $Int_{M_n(K)}(M_n(D))$ is closed under addition, but what about multiplication? I.e. is it a subring of $M_n(K)[x]$?

Theorem (Werner, 2012)

 $Int_{M_n(K)}(M_n(D))$ is a subring of $M_n(K)[x]$.

For $f, g \in Int_{M_n(K)}(M_n(D))$, need to show that fg is also integer-valued. While $(fg)(A) \neq f(A)g(A)$, we still have (fg)(A) = (fg(A))(A), so only need to consider the products fC for $C \in M_n(D)$.

If C is a unit, everything works out nicely; same for sums of units. As every matrix $(n \ge 2)$ is a sum of units, we are done.

Theorem (Werner, 2012)

 $Int_{M_n(K)}(M_n(D))$ is a subring of $M_n(K)[x]$.

For $f, g \in Int_{M_n(K)}(M_n(D))$, need to show that fg is also integer-valued. While $(fg)(A) \neq f(A)g(A)$, we still have (fg)(A) = (fg(A))(A), so only need to consider the products fC for $C \in M_n(D)$.

If C is a unit, everything works out nicely; same for sums of units. As every matrix $(n \ge 2)$ is a sum of units, we are done.

Theorem (Werner, 2012)

 $Int_{M_n(K)}(M_n(D))$ is a subring of $M_n(K)[x]$.

For $f, g \in Int_{M_n(K)}(M_n(D))$, need to show that fg is also integer-valued. While $(fg)(A) \neq f(A)g(A)$, we still have (fg)(A) = (fg(A))(A), so only need to consider the products fC for $C \in M_n(D)$. If C is a unit, everything works out nicely; same for sums of units. As

every matrix $(n \ge 2)$ is a sum of units, we are done.

Theorem (Frisch, 2013)

$$\operatorname{Int}_{\mathsf{M}_n(\mathcal{K})}(\mathsf{M}_n(D)) \cong \begin{bmatrix} \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \cdots & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) \\ \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \cdots & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) \\ \vdots & \vdots & \cdots & \vdots \\ \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)) & \cdots & \operatorname{Int}_{\mathcal{K}}(\mathsf{M}_n(D)). \end{bmatrix}$$

Upper triangular matrices

Theorem (Frisch, 2017)

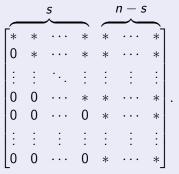
Let $T_n(D)$ denote the ring of $n \times n$ upper triangular matrices. Then $Int_{T_n(K)}(T_n(D)) = \{f \in T_n(K)[x] \mid f(A) \in T_n(D) \text{ for all } A \in T_n(D)\}$ is a subring of $T_n(K)[x]$ and is isomorphic to

$$\begin{bmatrix} \operatorname{Int}_{K}(\mathsf{T}_{n}(D)) & \operatorname{Int}_{K}(\mathsf{T}_{n-1}(D)) & \cdots & \operatorname{Int}_{K}(\mathsf{T}_{2}(D)) & \operatorname{Int}_{K}(D) \\ 0 & \operatorname{Int}_{K}(\mathsf{T}_{n-1}(D)) & \cdots & \operatorname{Int}_{K}(\mathsf{T}_{2}(D)) & \operatorname{Int}_{K}(D) \\ & & \ddots & \\ 0 & 0 & \cdots & \operatorname{Int}_{K}(\mathsf{T}_{2}(D)) & \operatorname{Int}_{K}(D) \\ 0 & 0 & \cdots & 0 & \operatorname{Int}_{K}(D) \end{bmatrix}$$

Block triangular matrices

Theorem (Sedighi Hafshejani, Naghipour, Rismanchian, 2019)

Let $0 \le s \le n$ and denote by ${}_sL_n(D)$ the ring of square matrices with entries in D which are of the form



Then $Int_{sL_n(K)}(sL_n(D))$ is a subring of $sL_n(K)[x]$.

Question

For which other subrings of $M_n(D)$ can we do similar things and obtain rings of integer-valued polynomials?

Definition of $M_{\preceq}(D)$

 $M_n(D)$, $T_n(D)$ and ${}_{s}L_n(D)$ are all instances of the following construction: Fix certain positions (i, j) and take all matrices whose only nonzero entries are in these positions. What possible patterns for these positions are allowed?

Definition

Let \leq be a preorder on $\{1, \ldots, n\}$, i.e. a reflexive and transitive relation. Define a subring $M_{\leq}(D)$ of $M_n(D)$ by setting

 $\mathsf{M}_{\preceq}(D) = \{(a_{ij}) \in \mathsf{M}_n(D) \mid a_{ij} \neq 0 \Rightarrow i \precsim j\}.$

Definition of $M_{\preceq}(D)$

 $M_n(D)$, $T_n(D)$ and ${}_{s}L_n(D)$ are all instances of the following construction: Fix certain positions (i, j) and take all matrices whose only nonzero entries are in these positions. What possible patterns for these positions are allowed?

Definition

Let \preceq be a preorder on $\{1, \ldots, n\}$, i.e. a reflexive and transitive relation. Define a subring $M_{\preceq}(D)$ of $M_n(D)$ by setting

$$\mathsf{M}_{\preceq}(D) = \{(a_{ij}) \in \mathsf{M}_n(D) \mid a_{ij} \neq 0 \Rightarrow i \precsim j\}.$$

Example

٢*	*	0	*	*	*	*	*	0	*	*	*	*			*	*	*	*	*
0	*	0	*	0	0	*	0	0	*	*	*	*			*	*	*	*	*
0	*	*	*	0	0	*	0	*	*	*	*	*			*	*	*	*	*
0	0	0	*	0	0	0	0	0	*				*	*		*	*	*	*
*	*	0	*	*	*	*	*	0	*				*	*		*	*	*	*
0	0	0	0	0	*	0	0	0	0						*				0
0	*	0	*	0	0	*	0	0	*							*	*	*	*
*	*	0	*	*	*	*	*	0	*							*	*	*	*
0	*	*	*	0	0	*	0	*	*									*	*
0	0	0	*	0	0	0	0	0	*_	0								*	*_

Example

٢*	*	0	*	*	*	*	*	0	*		۲*	*	*	0	0	*	*	*	*	*]
0	*	0	*	0	0	*	0	0	*		*	*	*	0	0	*	*	*	*	*
0	*	*	*	0	0	*	0	*	*		*	*	*	0	0	*	*	*	*	*
0	0	0	*	0	0	0	0	0	*		0	0	0	*	*	0	*	*	*	*
*	*	0	*	*	*	*	*	0	*	\simeq	0	0	0	*	*	0	*	*	*	*
0	0	0	0	0	*	0	0	0	0	=	0	0	0	0	0	*	0	0	0	0
0	*	0	*	0	0	*	0	0	*		0	0	0	0	0	0	*	*	*	*
*	*	0	*	*	*	*	*	0	*		0	0	0	0	0	0	*	*	*	*
0	*	*	*	0	0	*	0	*	*		0	0	0	0	0	0	0	0	*	*
0	0	0	*	0	0	0	0	0	*		0	0	0	0	0	0	0	0	*	*

A bigger example

[*	*	*	0	0	*	*	*	*	0	0	*	*	*	*]	
*	*	*	0	0	*	*	*	*	0	0	*	*	*	*	
*	*	*	0	0	*	*	*	*	0	0	*	*	*	*	
0	0	0	*	*	0	0	0	0	0	0	*	0	0	0	
0	0	0	*	*	0	0	0	0	0	0	*	0	0	0	
0	0	0	0	0	*	*	*	*	0	0	0	*	*	*	
0	0	0	0	0	*	*	*	*	0	0	0	*	*	*	
0	0	0	0	0	*	*	*	*	0	0	0	*	*	*	
0	0	0	0	0	*	*	*	*	0	0	0	*	*	*	
0	0	0	0	0	0	0	0	0	*	*	0	0	0	0	
0	0	0	0	0	0	0	0	0	*	*	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	*	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	
0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	
0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	

A useful property of $M_{\preceq}(D)$

Lemma

Let \leq be a preorder on $\{1, \ldots, n\}$ and $A \in M_{\leq}(D)$. Then A can be written as A = B + C where B is a sum of units and C is a diagonal matrix whose only nonzero entries are in positions (h, h) where the equivalence class $[h]_{\sim}$ is a singleton.

Proof.

We get everything off the diagonal from elementary matrices and square matrices of size ≥ 2 are sum of units. The only thing remaining is exactly the matrix *C* claimed above.

A useful property of $M_{\preceq}(D)$

Lemma

Let \leq be a preorder on $\{1, \ldots, n\}$ and $A \in M_{\leq}(D)$. Then A can be written as A = B + C where B is a sum of units and C is a diagonal matrix whose only nonzero entries are in positions (h, h) where the equivalence class $[h]_{\sim}$ is a singleton.

Proof.

We get everything off the diagonal from elementary matrices and square matrices of size ≥ 2 are sum of units. The only thing remaining is exactly the matrix *C* claimed above.

$$Int_{M_{\precsim}(K)}(M_{\precsim}(D))$$
 is a ring

Theorem

Let \preceq be any preorder on $\{1, \ldots, n\}$ and let $\operatorname{Int}_{M_{\preceq}(K)}(M_{\preceq}(D)) = \{f \in M_{\preceq}(K)[x] \mid f(A) \in M_{\preceq}(D) \text{ for all } A \in M_{\preceq}(D)\}.$ Then $\operatorname{Int}_{M_{\prec}(K)}(M_{\preceq}(D))$ is a subring of $M_{\preceq}(K)[x].$

- Suffices to show that Int_{M_≺(K)}(M_≺(D)) is closed under multiplication by elements of M_≺(D) from the right.
- M_≾(K)[x] ≅ M_≾(K[x]); give characterization of f = (f_{ih}) ∈ Int_{M_≾(K)}(M_≾(D)) in terms of the scalar polynomials f_{ih}. (which is particularly nice if [h]_∼) is singleton).
- Severy element A of M_≺(D) can be written as A = B + C, where B is a sum of units and C is a diagonal matrix whose nonzero entries are only in positions (h, h) where [h]_∼ is a singleton.

 $\operatorname{Int}_{\mathsf{M}_{\precsim}(K)}(\mathsf{M}_{\precsim}(D))$ is a ring

Theorem

Let \preceq be any preorder on $\{1, ..., n\}$ and let $\operatorname{Int}_{M_{\preceq}(K)}(M_{\preceq}(D)) = \{f \in M_{\preceq}(K)[x] \mid f(A) \in M_{\preceq}(D) \text{ for all } A \in M_{\preceq}(D)\}.$ Then $\operatorname{Int}_{M_{\prec}(K)}(M_{\preceq}(D))$ is a subring of $M_{\preceq}(K)[x].$

- Suffices to show that Int_{M_≺(K)}(M_≺(D)) is closed under multiplication by elements of M_≺(D) from the right.
- M_≾(K)[x] ≅ M_≾(K[x]); give characterization of f = (f_{ih}) ∈ Int_{M_≾(K)}(M_≾(D)) in terms of the scalar polynomials f_{ih}. (which is particularly nice if [h]_∼) is singleton).
- Severy element A of M_≺(D) can be written as A = B + C, where B is a sum of units and C is a diagonal matrix whose nonzero entries are only in positions (h, h) where [h]_∼ is a singleton.

$$\mathsf{Int}_{\mathsf{M}_{\precsim}(K)}(\mathsf{M}_{\precsim}(D))$$
 is a ring

Theorem

Let \preceq be any preorder on $\{1, ..., n\}$ and let $\operatorname{Int}_{M_{\preceq}(K)}(M_{\preceq}(D)) = \{f \in M_{\preceq}(K)[x] \mid f(A) \in M_{\preceq}(D) \text{ for all } A \in M_{\preceq}(D)\}.$ Then $\operatorname{Int}_{M_{\prec}(K)}(M_{\preceq}(D))$ is a subring of $M_{\preceq}(K)[x].$

- Suffices to show that Int_{M_≤(K)}(M_≤(D)) is closed under multiplication by elements of M_≤(D) from the right.
- M_≺(K)[x] ≃ M_≺(K[x]); give characterization of f = (f_{ih}) ∈ Int_{M_≺(K)}(M_≺(D)) in terms of the scalar polynomials f_{ih}. (which is particularly nice if [h]_∼) is singleton).
- Severy element A of M_≺(D) can be written as A = B + C, where B is a sum of units and C is a diagonal matrix whose nonzero entries are only in positions (h, h) where [h]_∼ is a singleton.

$$\mathsf{Int}_{\mathsf{M}_{\precsim}(K)}(\mathsf{M}_{\precsim}(D))$$
 is a ring

Theorem

Let \preceq be any preorder on $\{1, ..., n\}$ and let $\operatorname{Int}_{M_{\preceq}(K)}(M_{\preceq}(D)) = \{f \in M_{\preceq}(K)[x] \mid f(A) \in M_{\preceq}(D) \text{ for all } A \in M_{\preceq}(D)\}.$ Then $\operatorname{Int}_{M_{\prec}(K)}(M_{\preceq}(D))$ is a subring of $M_{\preceq}(K)[x].$

- Suffices to show that Int_{M_≤(K)}(M_≤(D)) is closed under multiplication by elements of M_≤(D) from the right.
- M_≺(K)[x] ≃ M_≺(K[x]); give characterization of f = (f_{ih}) ∈ Int_{M_≺(K)}(M_≺(D)) in terms of the scalar polynomials f_{ih}. (which is particularly nice if [h]_∼) is singleton).
- Severy element A of M_≺(D) can be written as A = B + C, where B is a sum of units and C is a diagonal matrix whose nonzero entries are only in positions (h, h) where [h]_∼ is a singleton.

The structure of $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$

Knowing that $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ is a ring, one can also obtain a nicer characterization of its elements in terms of scalar-coefficient integer-valued polynomials.

Connection to null-polynomials

Let $f \in \mathsf{M}_{\precsim}(\mathcal{K})[x]$ and write f = g/d for $g \in \mathsf{M}_{\precsim}(D)[x]$ and $d \in D$. Then

 $f\in {\rm Int}_{{\sf M}_{\prec}({\cal K})}({\sf M}_{\precsim}(D))\Leftrightarrow \bar{g}(A)=0\in {\sf M}_{\precsim}(D/dD) \text{ for all } A\in {\sf M}_{\precsim}(D/dD)$

For any finite (possibly noncommutative) ring R, there are nonzero polynomials vanishing everywhere (null-polynomials). Consider the set of them: $N(R) = \{f \in R[x] \mid f(r) = 0 \text{ for all } r \in R\}$. For which R is this a two-sided ideal of R[x]?

True for many classes: semisimple, odd order, ... (Werner, 2013).

Connection to null-polynomials

Let $f \in M_{\preceq}(K)[x]$ and write f = g/d for $g \in M_{\preceq}(D)[x]$ and $d \in D$. Then

 $f\in {\rm Int}_{{\sf M}_\precsim({\sf K})}({\sf M}_\precsim(D))\Leftrightarrow \bar{g}(A)=0\in {\sf M}_\precsim(D/dD) \text{ for all } A\in {\sf M}_\precsim(D/dD)$

For any finite (possibly noncommutative) ring R, there are nonzero polynomials vanishing everywhere (null-polynomials). Consider the set of them: $N(R) = \{f \in R[x] \mid f(r) = 0 \text{ for all } r \in R\}$. For which R is this a two-sided ideal of R[x]?

True for many classes: semisimple, odd order, ... (Werner, 2013).

Connection to null-polynomials

Let $f \in M_{\preceq}(K)[x]$ and write f = g/d for $g \in M_{\preceq}(D)[x]$ and $d \in D$. Then

 $f\in {\rm Int}_{{\sf M}_{\precsim}({\cal K})}({\sf M}_{\precsim}(D))\Leftrightarrow \bar{g}(A)=0\in {\sf M}_{\precsim}(D/dD) \text{ for all } A\in {\sf M}_{\precsim}(D/dD)$

For any finite (possibly noncommutative) ring R, there are nonzero polynomials vanishing everywhere (null-polynomials). Consider the set of them: $N(R) = \{f \in R[x] \mid f(r) = 0 \text{ for all } r \in R\}$. For which R is this a two-sided ideal of R[x]?

True for many classes: semisimple, odd order, ... (Werner, 2013).

Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R) is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain commutative finite rings.

Theorem

Let \preceq be any preorder and S any commutative ring. Then the set $N(M_{\preceq}(S))$ is a two-sided ideal of $M_{\preceq}(S)[x]$.

Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R) is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain commutative finite rings.

Theorem

Let \preceq be any preorder and S any commutative ring. Then the set $N(M_{\preceq}(S))$ is a two-sided ideal of $M_{\preceq}(S)[x]$.

Null-polynomials

Conjecture (Werner, 2013)

For any finite (noncommutative) ring R, the set of null-polynomials N(R) is a two sided ideal.

It suffices to show the theorem for all subrings of matrix rings over certain commutative finite rings.

Theorem

Let \preceq be any preorder and S any commutative ring. Then the set $N(M_{\preceq}(S))$ is a two-sided ideal of $M_{\preceq}(S)[x]$.

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?

- For any preorder \preceq on $\{1, \ldots, n\}$, define rings $M_{\preceq}(D) \subset M_n(D)$ by restricting entries in certain positions to be 0.
- Integer-valued polynomials $Int_{M_{\preceq}(K)}(M_{\preceq}(D))$ form a subring of $M_{\preceq}(K)[x]$.
- There is a characterization of Int_{M_≺(K)}(M_≺(D)) in terms of polynomials with coefficients in K.
- The set of null-polynomials $N(M_{\preceq}(S))$ is an ideal for all commutative rings S.
- What about restricting the entries to be in some ideal of *D* instead of zero?