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The Davenport Constant

Definition (Davenport Constant)
For a finite abelian group G , the Davenport Constant D(G ) is the
minimal integer such that any sequence of D(G ) terms from G must
have a nontrivial zero-sum subsequence (one whose terms sum to zero).

Remark (Relation to Factorization Theory)
Many arithmetic questions of in a monoid M, for example any (Transfer)
Krull Monoid, including Krull Domains, can be directly translated into
questions about zero-sum sequences over finite abelian groups.
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Example

Example
Let G = Cn ⊕ Cn, where Cn denotes a cyclic group of order n, say with
basis (e1, e2), so G = ⟨e1⟩ ⊕ ⟨e2⟩ with ord(e1) = ord(e2) = n.

Then

en−1
1 · en−1

2

shows D(G ) ≥ 2n − 1.

▶ Notation: Sequences written as unordered multiplicative strings, so

S = g1 · . . . · gℓ

with g1, . . . , gℓ ∈ G is a sequence of terms from G with length ℓ, and

gn = g · . . . · g︸ ︷︷ ︸
n

.
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Exact Value for Rank Two Groups

▶ (Olson 1969) D(Cn ⊕ Cn) = 2n − 1

▶ Group algebras/Polynomial Methods used to show
D(Cp ⊕ Cp) = 2p − 1 when p prime

▶ Auxiliary constant η(G ) introduced:

▶ Minimal integer such that any sequence of terms from S with length
η(G ) must contain a nontrivial zero-sum subsequence with length at
most the exponent exp(G )

▶ Group Algebra/Polynomial Methods used to show η(C 2
p ) = 3p − 2

▶ Inductive argument using D(G ) and η(G ) completes the proof and
also shows η(Cn ⊕ Cn) = 3n − 2.
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Characterization of Extremal Sequences I

Question
Characterize all sequences of length D(C 2

n )− 1 = 2n − 2 that do NOT
have a nontrivial zero-sum sequence.

Question
Equivalent to characterizing all minimal zero-sum sequences of length
D(C 2

n ) = 2n − 1, so those zero-sum sequences having no proper,
nontrivial zero-sum subsequence.

▶ Question Resolved: All have the form

S = en−1
1

n∏
i=1

(xie1 + e2)

for some basis (e1, e2) for G = C 2
n and some x1, . . . , xn ∈ [0, n − 1]

with x1 + . . .+ xn ≡ 1 mod n.
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Characterization of Extremal Sequences II

▶ (Gao, Geroldinger 2003) Small Cases, Basic Properties,
Reduction to odd case.

▶ (Bhowmik, Halupczok, Schalge-Puchta 2009)
More small cases n ≤ 9 (computer)

▶ (Gao, Geroldinger, G. 2010) Reduction to the case n = p is prime.

▶ (Reiher 2010) The case n = p is prime.

▶ (Geroldinger, G., Zhong, 2025?) Complete Compilation of proof
(including a fixed missing case) and removal of computer verification
of small case n ≤ 9.

▶ Total Length nearly 150 pages.
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A New Variation

Definition
Let s≤k(G ) denote the smallest integer such that any sequence of s≤k(G )
terms from G must contain a nontrivial zero-sum subsequence of length
at most k.

Theorem (Wang, Zhao 2017)
s≤2n−1−k(G ) = 2n − 1 + k for G = C 2

n and k ∈ [0, n − 1].

Remark
s≤2n−1−k(G ) = ∞ for k ≥ n,
s≤2n−1−k(G ) = η(G ) for k = n − 1,
s≤2n−1−k(G ) = D(G ) for k ≤ 0,
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Characterization of Extremal Sequences III

Question
Characterize all sequences of length s≤2n−1−k(G )− 1 = 2n − 2 + k that
do NOT have a nontrivial zero-sum sequence of length at most
2n − 1− k.

▶ When k ∈ {0, 1}, equivalent to characterization of extremal
sequence for D(G ), so known.

▶ When k = n− 1, equivalent to characterization of etremal sequences
for η(G ). Known to follow from case k = 1 (Gao, Geroldinger 2003)

Conjecture
When k ∈ [2, n − 2], all such sequences have the form

S = en−1
1 · en−1

2 · (e1 + e2)
k

for some basis (e1, e2) for G = C 2
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Characterization of Extremal Sequences IV

▶ (G., Wang, Zhao 2020) Shown true when n = p is prime and
k ≤ 2p−1

3 .

▶ (G.,Liu 2022) Reduction to case n = p prime

▶ Final piece n = p now resolved:

Theorem (Ebert, G. 2023)
Let G = Cp ⊕ Cp with p a prime, let k ∈ [2, p − 2] be an integer, and let
S be a sequence of terms from G with |S | = D(G ) + k − 1 = 2p − 2 + k
having no nonempty zero-sum subsequence of length at most
D(G )− k = 2p − 1− k. Then there is a basis (e1, e2) for G such that

S = ep−1
1 · ep−1

2 · (e1 + e2)
k .
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Ideas for the Proof I

▶ First Step: Extend a Lemma from [G., Wang, Zhao] for k ≤ 2p−1
3 to

general k ≤ p − 1.

Lemma
Let G = Cp ⊕ Cp with p prime, let k ∈ [1, p − 1] be an integer, and let S
be a sequence of terms from G with length 2p − 2 + k that has no
nontrivial zero-sum subsequence of length at most 2p − 1− k . Then

Number of zero-sums of length 2p − 1 ≡ k mod p.

In particular, S contains at least k zero-sum subsequences of length
D(G ) = 2p − 1, and any such zero-sum is minimal.

▶ Using the above lemma and the characterization for D(G ) gives the
complete structure for 2p − 1 terms in S . In particular, there is one
term e1 with multiplicity p − 1.

▶ Matrix calculation modulo p using binomial congruences.
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Ideas for the Proof II

▶ A new proof of the equality s≤2p−1−k(C
2
p ) = 2p − 1 + k .

▶ Take the sequence S = g1 · . . . · g2p−1+k in G = C 2
p = ⟨e1⟩ ⊕ ⟨e2⟩

and create new zero-sum sequence

S̃ = (g1 + e3) · . . . · (g2p−1+k + e3) · (−e3)
p−k−1

of terms in C 3
p = ⟨e1⟩ ⊕ ⟨e2⟩ ⊕ ⟨e3⟩.

▶ Use that D(C 3
p ) = 3p − 2 is known for primes to find a zero-sum

subsequence of S̃ , which then corresponds to a zero-sum sequence in
S of the target length.
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Ideas for the Proof III

▶ Modify the proof when S = g1 · . . . · g2p−2+k has one term less to
create a zero-sum sequence of terms

S̃ = (g1 + e3) · . . . · (g2p−2+k + e3) · (−e3)
p−k−1 · g0

from C 3
p of length D(C 3

p ) = 3p − 2.

▶ Show it is a minimal zero-sum

▶ Use that it has term with multiplicity p − 1 to reduce the
characterization of its structure to the characterization of extremal
sequences for D(C 2

p ).

▶ Get a 2nd term with multiplicity p − 1:

S = ep−1
1 · ep−1

2 · T

.

▶ Use another reduction map to a cyclic group to show all terms in T
are equal and the proof then concludes.
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Thanks!


