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Definition (Davenport Constant)

For a finite abelian group G, the Davenport Constant D(G) is the
minimal integer such that any sequence of D(G) terms from G must
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Remark (Relation to Factorization Theory)

Many arithmetic questions of in a monoid M, for example any (Transfer)
Krull Monoid, including Krull Domains, can be directly translated into
questions about zero-sum sequences over finite abelian groups.
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Example

Example
Let G = C, & C,, where C, denotes a cyclic group of order n, say with
basis (e, &), so G = (e1) ® (&) with ord(e;) = ord(e2) = n. Then

shows D(G) > 2n — 1.

» Notation: Sequences written as unordered multiplicative strings, so

S=g1-... &
with g1,..., 8¢ € G is a sequence of terms from G with length ¢, and
g"=¢g g
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Exact Value for Rank Two Groups

v

(Olson 1969) D(C, & C,) =2n—1
Group algebras/Polynomial Methods used to show
D(C, @ Cp) =2p — 1 when p prime
Auxiliary constant n(G) introduced:

Minimal integer such that any sequence of terms from S with length
1(G) must contain a nontrivial zero-sum subsequence with length at
most the exponent exp(G)

Group Algebra/Polynomial Methods used to show 7(C3) = 3p — 2

Inductive argument using D(G) and 1(G) completes the proof and
also shows n(C, & C,) = 3n—2.
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Question

Characterize all sequences of length D(C2) — 1 = 2n — 2 that do NOT
have a nontrivial zero-sum sequence.

Question

Equivalent to characterizing all minimal zero-sum sequences of length
D(C?) = 2n — 1, so those zero-sum sequences having no proper,
nontrivial zero-sum subsequence.

» Question Resolved: All have the form
= e1 -1 H Xje; + ez

for some basis (e1, e2) for G = C2 and some xg,...,x, € [0,n — 1]
with x1 +...+x, =1 mod n.
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> (Gao, Geroldinger 2003) Small Cases, Basic Properties,
Reduction to odd case.

» (Bhowmik, Halupczok, Schalge-Puchta 2009)
More small cases n < 9 (computer)

v

(Gao, Geroldinger, G. 2010) Reduction to the case n = p is prime.

v

(Reiher 2010) The case n = p is prime.

v

(Geroldinger, G., Zhong, 20257) Complete Compilation of proof
(including a fixed missing case) and removal of computer verification
of small case n < 0.

» Total Length nearly 150 pages.
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A New Variation

Definition

Let s<x(G) denote the smallest integer such that any sequence of s<x(G)
terms from G must contain a nontrivial zero-sum subsequence of length
at most k.

Theorem (Wang, Zhao 2017)
s<on-1-k(G)=2n—1+k for G = C2 and k € [0,n — 1].

Remark

S<on—1-k(G) = o0 for k > n,
s<on—1-k(G) =n(G) fork =n—1,
S§2n_1_k(G) = D(G) for k S 0,
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Characterization of Extremal Sequences Il

Question
Characterize all sequences of length s<op_1-k(G) — 1 =2n—2+ k that

do NOT have a nontrivial zero-sum sequence of length at most
2n—1— k.

» When k € {0, 1}, equivalent to characterization of extremal
sequence for D(G), so known.

» When k = n— 1, equivalent to characterization of etremal sequences
for n(G). Known to follow from case k = 1 (Gao, Geroldinger 2003)

Conjecture
When k € [2,n — 2], all such sequences have the form

S=et-ef (a1 + &)

for some basis (e1, &) for G = C2.
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» (G., Wang, Zhao 2020) Shown true when n = p is prime and
k< 222t

» (G.,Liu 2022) Reduction to case n = p prime

» Final piece n = p now resolved:

Theorem (Ebert, G. 2023)

Let G = C, & C, with p a prime, let k € [2, p — 2] be an integer, and let
S be a sequence of terms from G with |S|=D(G)+ k—-1=2p—-2+k
having no nonempty zero-sum subsequence of length at most

D(G) — k=2p—1— k. Then there is a basis (e, ;) for G such that

S=ePL. eé’*l (e1 + )",



|deas for the Proof |

> First Step: Extend a Lemma from [G., Wang, Zhao] for k < ?

general k < p— 1.

to



|deas for the Proof |

> First Step: Extend a Lemma from [G., Wang, Zhao] for k < % to

general k < p— 1.

Lemma

Let G = C, & C, with p prime, let k € [1,p — 1] be an integer, and let S
be a sequence of terms from G with length 2p — 2 + k that has no
nontrivial zero-sum subsequence of length at most 2p — 1 — k. Then

Number of zero-sums of length2p —1 = k mod p.
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> First Step: Extend a Lemma from [G., Wang, Zhao] for k < % to

general k < p— 1.

Lemma

Let G = C, & C, with p prime, let k € [1,p — 1] be an integer, and let S
be a sequence of terms from G with length 2p — 2 + k that has no
nontrivial zero-sum subsequence of length at most 2p — 1 — k. Then

Number of zero-sums of length2p —1 = k mod p.

In particular, S contains at least k zero-sum subsequences of length
D(G) =2p — 1, and any such zero-sum is minimal.

» Using the above lemma and the characterization for D(G) gives the
complete structure for 2p — 1 terms in S. In particular, there is one
term e; with multiplicity p — 1.

» Matrix calculation modulo p using binomial congruences.
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» A new proof of the equality s§2,,_1_k(C§) =2p—1+k.

> Take the sequence S = g1 - ... gp_14k IN G = C3 = (e1) ® (&)
and create new zero-sum sequence
S=(g+e) .. (gp1k+ &) (—e) "t

of terms in C3 = (e1) & (e2) & (e3).
> Use that D(C3) = 3p — 2 is known for primes to find a zero-sum

subsequence of S, which then corresponds to a zero-sum sequence in
S of the target length.
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» Modify the proof when S = g1 ... gp_2+k has one term less to
create a zero-sum sequence of terms

S p—k—=1,

S=(g+e) ... (gp-2:k+e) (—e3) 80

from C3 of length D(C2) = 3p — 2.
» Show it is a minimal zero-sum

» Use that it has term with multiplicity p — 1 to reduce the
characterization of its structure to the characterization of extremal
sequences for D(C7).

» Get a 2nd term with multiplicity p — 1:

_ p-1 . p—1
S=e 6T

» Use another reduction map to a cyclic group to show all terms in T
are equal and the proof then concludes.



Thanks!



