Monomial Ideals

(日) (同) (三) (三)

Further work 00000

Asymptotic Behaviour of the v-number of homogeneous ideals

Antonino Ficarra

2nd International Joint Meeting co-organized by the Unione Matematica Italiana (UMI) and the American Mathematical Society (AMS)

Università degli Studi di Palermo

Antonino Ficarra

Monomial Ideals

Further work 00000

Two giants in Commutative Algebra

Wolmer Vasconcelos

Jürgen Herzog

Antonino Ficarra

Further work

Primary decomposition in Noetherian rings

Let R be a Noetherian ring, and let $I \subset R$ be an ideal. Let

 $I = Q_1 \cap Q_2 \cap \dots \cap Q_t$

be an irredundant primary decomposition of I, where each Q_i is a \mathfrak{p}_i -primary ideal.

The set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_t\}$ is uniquely determined for it is equal to the set

 $\{(I:f) \mid f \in R \text{ and } (I:f) \text{ is a prime ideal}\}.$

We denote this set by Ass(I).

Monomial Ideal

Further work

An example

Let
$$S = \mathbb{Q}[x, y, z]$$
 and $I = (xy, x - yz)$. Then
 $I = (y^2, x - yz) \cap (x, z)$
and $Ass(I) = \{(x, y), (x, z)\}.$
We have
 $(I : x) = (x, y),$

and

$$(I:y^2) = (x,z).$$

Antonino Ficarra

Graded rings

Let K be a field and let $S = K[x_1, \ldots, x_n]$ be the polynomial ring. We set $\deg x_i = 1$ for $1 \le i \le n$. Then, S becomes a graded ring

$$S = \bigoplus_{d \ge 0} S_d$$

where S_d is the K-vector space with basis all monomials of degree d.

A polynomial $f \in S_d$ is called homogeneous of degree d.

An ideal $I \subset S$ is called homogeneous or graded ideal if it can be generated by homogeneous polynomials.

Further work

Graded version of the primary decomposition

Let $I \subset S = K[x_1, \ldots, x_n]$ be a graded ideal.

Then each $\mathfrak{p} \in \operatorname{Ass}(I)$ is a graded prime ideal and there exists a homogeneous polynomial $f \in S$ such that $(I : f) = \mathfrak{p}$.

Example. Let $I = (x^3, x^2y, x^2z^2, yz, z^4) \subset S = K[x, y, z]$. Then

 $Ass(I) = \{(x, z), (x, y, z)\}.$

In particular, (I:xy) = (x,z) and $(I:x^2z) = (x,y,z)$.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = の Q ()

Antonino Ficarra

イロト イヨト イヨト イヨト

3

The v-number of a graded ideal

In

S.M. Cooper, A. Seceleanu, S.O. Tohăneanu, M. Vaz Pinto, R.H. Villarreal. Generalized minimum distance functions and algebraic invariants of geramita ideals. Adv. Appl. Math., 112:101940, 2020.

the concept of v-number was introduced, in connection with the theory of Reed–Muller type codes and minimum distance functions.

Let $I \subset S$ be a graded ideal and $\mathfrak{p} \in \mathsf{Ass}(I)$.

The $v_p(I)$ -number of I is defined as

 $\mathsf{v}_{\mathfrak{p}}(I) = \min\{\deg(f) : f \in S \text{ is homogeneous and } (I:f) = \mathfrak{p}\}.$

The v-number of I (v in honor of Vasconcelos) is defined as

$$\mathsf{v}(I) = \min_{\mathfrak{p}\in\mathsf{Ass}(I)}\mathsf{v}_{\mathfrak{p}}(I).$$

Antonino Ficarra

How to compute the v-number of a graded ideal

Let $\mathfrak{m} = (x_1, \ldots, x_n)$ be the graded maximal ideal of S. For a graded module $M = \bigoplus_{d \ge 0} M_d$ we set $\alpha(M) = \min\{d : M_d \neq 0\}$ and $\omega(M) = \max\{d : (M/\mathfrak{m}M)_d \neq 0\}$.

Theorem (Grisalde-Reyes-Villarreal, 2019)

Let $I \subset S$ be a graded ideal and let $\mathfrak{p} \in Ass(I)$. The following hold.

If $\mathcal{G} = \{\overline{g_1}, \dots, \overline{g_r}\}$ is a homogeneous minimal generating set of $(I:\mathfrak{p})/I$, then

 $\mathsf{v}_{\mathfrak{p}}(I) = \min\{ \deg(g_i) \ : \ 1 \le i \le r \text{ and } (I:g_i) = \mathfrak{p} \}.$

2
$$v(I) = \min\{v_{\mathfrak{p}}(I) : \mathfrak{p} \in \mathsf{Ass}(I)\}.$$

3 $v_{\mathfrak{p}}(I) \ge \alpha((I : \mathfrak{p})/I)$, with equality if $\mathfrak{p} \in \mathsf{Max}(I)$.
4 If $\mathsf{Ass}(I) = \mathsf{Max}(I)$, then $v(I) = \min\{\alpha((I : \mathfrak{p})/I) : \mathfrak{p} \in \mathsf{Ass}(I)\}.$

・ロト ・四ト ・ヨト ・ヨト

Э

Powers of ideals and their history

Theorem (Brodmann, 1979)

Let I be an ideal of a Noetherian ring R. Then

$$\operatorname{Ass}(I^{k+1}) = \operatorname{Ass}(I^k)$$

for all $k \gg 0$.

Theorem (Cutkosky-**Herzog**-Trung, Kodiyalam, 1999)

Let $I \subset S$ be a graded ideal, and let

$$\operatorname{reg}(I) = \max\{i - j : \beta_{i,i+j}(I) \neq 0\}$$

be its Castelnuovo–Mumford regularity. Then $reg(I^k) = ak + b$ is a linear function in k for $k \gg 0$.

Antonino Ficarra

Monomial Ideals

Further work

Consequences of Brodmann result

The common set $\operatorname{Ass}(I^{k+1}) = \operatorname{Ass}(I^k)$ for $k \gg 0$, is called the set of stable primes of I and it is denoted by $\operatorname{Ass}^{\infty}(I)$.

Consequences

$$\mathsf{v}(I^k) = \min_{\mathfrak{p} \in \mathsf{Ass}^{\infty}(I)} \mathsf{v}_{\mathfrak{p}}(I^k),$$

for all $k \gg 0$.

Antonino Ficarra

・ロト ・四ト ・ヨト ・ヨト

E

A blowup algebra associated to stable primes

In

A. FICARRA, E. SGROI. Asymptotic Behaviour of the v-number of homogeneous ideals, 2023, preprint arXiv:2306.14243.
 we studied the asymptotic behaviour of the function v(I^k).

Let $I \subset S$ be a graded ideal and let $\mathfrak{p} \in \mathsf{Ass}^{\infty}(I)$.

Let $\mathcal{F}_{\mathfrak{p}}(I) = \bigoplus_{d \geq 0} (I^k/\mathfrak{p}I^k)$. Then $\mathcal{F}_{\mathfrak{p}}(I)$ is a graded ring.

Furthermore, let

 $\operatorname{Soc}_{\mathfrak{p}}(I) = \bigoplus_{d \ge 0} (I^k : \mathfrak{p})/I^k.$

Theorem (F-Sgroi 2023)

 $\mathsf{Soc}_{\mathfrak{p}}(I)$ is a finitely generated bigraded $\mathcal{F}_{\mathfrak{p}}(I)$ -module.

Antonino Ficarra

 $\gg 0$.

<u>Consequences</u> of the finite generation of $Soc_{\mathfrak{p}}(I)$

Corollary (F-Sgroi 2023)

Let
$$I \subset S$$
 be a graded ideal and let $\mathfrak{p} \in \mathsf{Ass}^\infty(I)$. Then,

1
$$(I^k: \mathfrak{p}) = I(I^{k-1}: \mathfrak{p})$$
 for all $k \gg 0$.
2 $v_{\mathfrak{p}}(I^{k-1}) + \alpha(I) \le v_{\mathfrak{p}}(I^k) \le v_{\mathfrak{p}}(I^{k-1}) + \omega(I)$ for all $k \gg 0$.
3 $v(I^{k-1}) + \alpha(I) \le v(I^k) \le v(I^{k-1}) + \omega(I)$ for all $k \gg 0$.

$$\ \ \, {\bf 4} \ \ \, \omega((I^k:\mathfrak{p})/I^k)\geq \alpha((I^{k-1}:\mathfrak{p})/I^{k-1})+\alpha(I), \ {\rm for \ all} \ k\gg 0.$$

6 The function
$$v_{\mathfrak{p}}(I^k)$$
 is strictly increasing, for all $k \gg 0$.

7 The function $v(I^k)$ is strictly increasing, for all $k \gg 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Further work 00000

Asymptotic behaviour of the v-number

Defining a suitable quotient module $Soc_{p}^{*}(I)$ of $Soc_{p}(I)$, we proved:

Theorem (F-Sgroi 2023)

Let $I \subset S$ be a graded ideal. Then:

- I For all $k \gg 0$ and all $\mathfrak{p} \in Ass^{\infty}(I)$, $v_{\mathfrak{p}}(I^k)$ and $v(I^k)$ are linear functions in k.
- 2 For any $\mathfrak{p} \in \operatorname{Ass}^{\infty}(I)$, $\lim_{k \to \infty} \frac{v_{\mathfrak{p}}(I^k)}{k}$ exists and belongs to the set $\{d : (I/\mathfrak{m}I)_d \neq 0\}$. In particular $\alpha(I) \leq \lim_{k \to \infty} \frac{v_{\mathfrak{p}}(I^k)}{k} \leq \omega(I)$.
- 3 $\lim_{k \to \infty} \frac{\mathsf{v}(I^k)}{k}$ exists and it is equal to $\alpha(I)$.
- 4 For all $k \gg 0$, $v(I^k) = \alpha(I)k + b$ for some integer $b \in \mathbb{Z}$.
- **5** Furthermore, if I is a monomial ideal, then $b \ge -1$.

Primary Decomposition 00000 Asymptotic behaviour of the v-number

Monomial Ideals

Further work

A conjecture

We expect that

A BIG Conjecture

Let $I \subset S$ be a graded ideal. Then

 $v(I^k) < \operatorname{reg}(I^k)$, for all $k \gg 0$.

▲日▼▲□▼▲□▼▲□▼ 回 ろくの

Antonino Ficarra

The v-number of monomial ideals in two variables

Any monomial ideal $I \subset S = K[x, y]$ is determined by two sequences

 $\mathbf{a}: a_1 > a_2 > \dots > a_m \ge 0, \qquad \mathbf{b}: 0 \le b_1 < b_2 < \dots < b_m$

such that $G(I) = \{x^{a_1}y^{b_1}, x^{a_2}y^{b_2}, \dots, x^{a_m}y^{b_m}\}$. Thus, we set $I = I_{\mathbf{a},\mathbf{b}}$.

Theorem (F-Sgroi 2023)

$$\mathsf{v}(I) = \begin{cases} \min\{a_i + b_{i+1} - 2 \ : \ 1 \le i \le m - 1\}, \text{ if } b_1 = 0 \text{ and } a_m = 0, \\ \min\{a_i + b_i - 1, \\ a_i + b_{i+1} - 2 \ : \ 1 \le i \le m - 1\}, \text{ if } b_1 \ne 0 \text{ and } a_m = 0, \\ \min\{a_i + b_i - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ a_i + b_i - 1, \\ min\{a_m + b_m - 1, \\ min\{a_m + b_m$$

Antonino Ficarra

The v-number of monomial ideals in two variables

Proposition (F-Sgroi, 2023)

1 Ass
$$(I_{\mathbf{a},\mathbf{b}}^k) = \operatorname{Ass}^{\infty}(I_{\mathbf{a},\mathbf{b}})$$
 for all $k \ge 1$.

2 $(x) \in Ass^{\infty}(I_{\mathbf{a},\mathbf{b}})$ if and only if $a_m > 0$. In this case, for all $k \ge 1$

$$\mathsf{v}_{(x)}(I_{\mathbf{a},\mathbf{b}}^k) = (a_m + b_m)k - 1.$$

3 $(y) \in Ass^{\infty}(I_{\mathbf{a},\mathbf{b}})$ if and only if $b_1 > 0$. In this case, for all $k \ge 1$

$$\mathsf{v}_{(y)}(I_{\mathbf{a},\mathbf{b}}^k) = (a_1 + b_1)k - 1.$$

4 $\mathfrak{m} = (x, y) \in \mathsf{Ass}^{\infty}(I_{\mathbf{a}, \mathbf{b}})$ if and only if m > 0.

Theorem (F-Sgroi, 2023)

For any integer $a \ge 1$ and $b \ge -1$, there exists a monomial ideal $I_{\mathbf{a},\mathbf{b}}$ such that $v(I_{\mathbf{a},\mathbf{b}}^k) = ak + b$ for all $k \ge 1$.

Antonino Ficarra

The v-number of monomial ideals with linear powers

Let I be a monomial ideal. Then $\operatorname{reg}(I^k) \ge \alpha(I)k$ for all $k \ge 1$. We say that I has linear powers if $\operatorname{reg}(I^k) = \alpha(I)k$ for all $k \ge 1$.

Proposition (F, 2023)

If I is a monomial ideal, $v(I^k) \ge \alpha(I)k - 1$ for all $k \ge 1$.

Thus, we expect that

Conjecture (F, 2023)

Let I be a monomial ideal with linear powers. Then, for all $k \ge 1$,

$$\mathsf{v}(I^k) = \alpha(I)k - 1.$$

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = めんぐ

Antonino Ficarra

Some partial results

Theorem (F 2023)

Let $I \subset S$ be a monomial ideal having linear powers. Then

 $\mathsf{v}(I^k) = \alpha(I)k - 1$

for all $k \ge 1$, in the following cases:

- **I** I = I(G) is the edge ideal of a cochordal graph. That is, I is a squarefree monomial ideal generated in degree two and having a linear resolution.
- **2** *I* is polymatroidal.
- 3 I is an Hibi ideal.

4 depth
$$S/I = 0$$
.

Hibi ideals

Let (P, \succeq) be a poset, $P = \{p_1, \ldots, p_n\}$. A poset ideal \mathcal{I} of P, is a subset of P such that if $p_i \in P$, $p_j \in \mathcal{I}$ and $p_i \preceq p_j$, then $p_i \in \mathcal{I}$. Let $\mathcal{J}(P)$ the set of all poset ideals of P. For any $\mathcal{I} \in \mathcal{J}(P)$, define

 $u_{\mathcal{I}} = (\prod_{p_i \in \mathcal{I}} x_i) (\prod_{p_i \in P \setminus \mathcal{I}} y_i).$

The Hibi ideal (associated to P) is the monomial ideal:

 $H_P = (u_{\mathcal{I}} : \mathcal{I} \text{ is a poset ideal of } P) \subset S = K[x_i, y_i : p_i \in P].$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 = ∽ � � �

Antonino Ficarra

The case of Hibi ideals

Theorem (F, 2023)

Let H_P be an Hibi ideal. Then:

- $\textbf{I} \quad \mathsf{Ass}(H_P^k) = \mathsf{Ass}^{\infty}(H_P) = \{(x_i, y_j) : p_i \preceq p_j\} \text{ for all } k \ge 1.$
- **2** For all $k \ge 1$:

$$\mathsf{v}_{(x_i,y_j)}(H_P^k) = \begin{cases} |P|k-1 & \text{if } i=j\\ |P|k+|\{p_\ell \in P : p_i \prec p_\ell \prec p_j\}| & \text{if } i < j \end{cases}$$

3
$$v(H_P^k) = |P|k - 1$$
 for all $k \ge 1$.

▲ロト▲御ト▲臣ト▲臣ト 臣 のへぐ

Antonino Ficarra

Monomial Ideals

An Example

Let
$$(P, \succeq)$$
 with $P = X = \{x_1, x_2, x_3\}$, $x_3 \succ x_1$ and $x_3 \succ x_2$.

Then, $v_{(x_i,y_j)}(H_P^k) = 3k - 1$ for all $p_i = p_j$ and $v_{(x_i,y_j)}(H_P^k) = 3k$ otherwise.

Antonino Ficarra

Monomial Ideals

Further work 00000

E

An example

 $\text{ For instance, } \mathsf{v}_{(x_1,x_5)}(H^k_P) = 6k+2 \text{ for all } k \geq 1.$

Antonino Ficarra

- P. BISWAS, M. MANDAL, A study of v-number for some monomial ideals, 2023, arXiv preprint arXiv:2308.08604.
- P. BISWAS, M. MANDAL, K. SAHA, Asymptotic behaviour and stability index of v-numbers of graded ideals, 2024, preprint arXiv:2402.16583.
- A. CONCA, A note on the v-invariant, Proceedings of the American Mathematical Society 152.06 (2024): 2349-2351.
- D. DEY, A.V. JAYANTHAN, K. SAHA. On the v-number of binomial edge ideals of some classes of graphs. 2024, preprint arXiv:2405.15354
- A. FICARRA, *Simon's conjecture and the v-number of monomial ideals*, Collectanea Mathematica (2024): 1-16.

- A. FICARRA, P. MACIAS MARQUES, The v-function of powers of sums, 2024, preprint arXiv:2405.16882.
- A. FICARRA, E. SGROI, Asymptotic behaviour of the v-number of homogeneous ideals, 2023, preprint https://arxiv.org/abs/2306.14243
- A. FICARRA, E. SGROI, VNumber, *Macaulay2 Package* available at https://github.com/EmanueleSgroi/VNumber, 2024.
- A. FICARRA, E. SGROI, Asymptotic behaviour of integer programming and the v-function of a graded filtration, 2024, preprint https://arxiv.org/abs/2403.08435

- L. FIORINDO, A theorem on the asymptotic behaviour of the generalised v-number, 2024, preprint arxiv:2401.17815.
- L. FIORINDO, D. GHOSH, On the asymptotic behaviour of the Vasconcelos invariant for graded modules, 2024, preprint arxiv:2401.16358.
- D. GHOSH, S. PRAMANIK. Asymptotic v-numbers of graded (co) homology modules involving powers of an ideal. 2024, preprint arXiv:2405.19992

N. KOTAL, K. SAHA, On the v-number of Gorenstein ideals and Frobenius powers, 2023, preprint arXiv:2311.04136.

- M. KUMAR, R. NANDURI, K. SAHA, The slope of v-function and Waldschmidt Constant, 2024, preprint https://arxiv.org/abs/2404.00493.
- K. SAHA, Binomial expansion and the v-number, 2024, preprint arXiv:2406.05567
- K. SAHA, The v-number and Castelnuovo-Mumford regularity of cover ideals of graphs, International Mathematics Research Notices, 2024. 11, 9010-9019.

A. VANMATHI, P. SARKAR, *v*-numbers of symbolic powers filtrations, 2024, preprint https://arxiv.org/abs/2403.09175.

Thanks for the attention!

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = めんぐ

Antonino Ficarra Asymptotic Behaviour of the v-number of homogeneous ideals