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Elasticity of the Normset

Classically, the Dedekind-Hasse norm has been used to explore
properties of rings of algebraic integers. We recall that if K ⊆ F is
an extension of algebraic number fields and α ∈ F then

NF
K (α) =

∏
σ

σ(α) ∈ K

with the product taken over distinct embeddings into C.

If this norm function is restricted to the ring of integers of F (T )
then the image forms a subset of the ring of integers of K (R).
What is more, the norm is a monoid homomorphism with the
properties that NF

K (α) = 0 if and only if α = 0 and if α ∈ T then
α is a unit in T if and only if NF

K (α) is a unit in R.
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Here are some older theorems on the interplay between a ring of
integers and its set of norms.

Theorem (AB, PAMS 1996)

If F/K is Galois and R, the ring of integers of F is a UFD, then
the ring of integers of F is a UFD if and only if its set of integral
norms is a UFM.

Over the next few years various aspects of these ideas were studied.
For example, it was shown that the set of integral norms is
saturated (that is, contains quotient of norms up to a unit if they
are integral) if and only if the Galois group acts trivially on the
class group. Special attention was focused on the quadratic case.
The previous theorem was generalized in

Theorem (AB, J. Number Theory 1998)

If F/K is Galois and R, the ring of integers of F is a UFD, then
the ring of integers of F is an HFD if and only if the elasticity in
the set of norms is 1.
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In 1999, we have the following.

Theorem (AB, Comm. Alg.)

Let F/Q be an algebraic number field with ring of integers R. If
R ⊆ R is an order with the HFD property, then R is an HFD. If, in
addition, F is Galois over Q of odd degree, then R is a UFD.

Here is some more recent work. Much of the next couple of slides
can also be found (in very different language) in a couple of recent
papers:

• On monoids of weighted zero-sum sequences and applications
to norm monoids in Galois number fields and binary quadratic
forms by A. Geroldinger, F. Halter-Koch, and Q. Zhong

• Monoids of sequences over finite abelian groups defined via
zero-sums with respect to a given set of weights and
applications to factorizations of norms of algebraic integers S.
Boukheche, K. Merito, O. Ordaz, and W. Schmid
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We will highlight some of the interesting results in our context and
show where this leads.

It is well-known (Valenza-Narkiewicz) that if R is a ring of algebraic

integers then its elasticity is given by ρ(R) =
D(Cl(R))

2
if the class

number is greater than 1 (here D(Cl(R)) denotes the Davenport
constant of the class group). It was also shown in one of the earlier
papers referenced before that if S is the set of integral norms of R
then in the Galois case ρ(R) ≥ ρ(S) (“Galois” is important here as
UFD rings of integers can have very high elasticities in their set of
norms if Galois is not enforced and the degree of the extension
exceeds 6). Additionally, it was shown in some cases (e.g. trivial
Galois action on the class group) that we can have ρ(R) = ρ(S)
(this observation, coupled with Carlitz’ theorem highlights why the
HFD property is preserved in the set of norms).
This raises the obvious question that asks what is the relationship
between the elasticity of the set of norms and the elasticity of the
parent ring of integers.
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Definition
Let A be an abelian group and G a subgroup of Aut(A). We define
DG (A) := n to be the length of the longest 0 sequence such that if
{ϕi} is a collection of automorphisms from G, with

n∑
i=1

ϕi (ai ) = 0

then the sequence has no proper subsequence.

This generalized Davenport constant is clearly bounded above by
the “ordinary” Davenport constant and in a couple of cases (e.g. if
the automorphism group consists of the identity and the
automorphism that inverts each element and A is the direct
product of a group of odd order and a 2−elementary abelian
group).
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Theorem
Let R be a Galois ring of integers with class group A. If S is the

set of norms of R and |A| > 1 then ρ(S) =
DG (A)

2
.

The next result is a corollary to this theorem and is also a nice way
to see some of the results alluded to earlier in this talk.

Corollary

If R is a quadratic ring of integers and A is the direct product of a
group of odd order and a 2−elementary abelian group, then
ρ(R) = ρ(S).
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Focusing on the Galois case, we note that Galois groups place
some restrictions on class groups that are possible. For example,
we noted earlier that if F/Q is of odd degree then R is an HFD if
and only R is a UFD (since class number 2 is problematic for odd
Galois group). This can be extended further.

Theorem
Let p < 23 be a prime and a ∈ Z be not divisible by the pth power
of any prime. If R is the ring of integers of the splitting field of
xp − a, then R is an HFD if and only if R is a UFD.

The proof of this hinges on the fact that Z[ζp] (where ζp is a
primitive pth root of unity) is a UFD if (and only if) p < 23.
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To see how the Galois group forces conditions on the class group,
we consider a stronger Galois action.

Definition
Let G be a finite group and A an abelian group with A′ some
specified subgroup of A. We say that G is a Galois action on A if

1. eG · a = a for all a ∈ A.

2. g1 · (g2 · a) = g1g2 · a for all g1, g2 ∈ G, a ∈ A.

3. g(a1a2) = g(a1)g(a2) for all g ∈ G , a1, a2 ∈ A.

4.
∏

g∈G g(a) ∈ A′ for all a ∈ A.
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In practice, A′ is often eA and the fourth “norm” condition is a
translation of the fact that in extensions of Z (or a PID in general)
then the norm of an ideal is principal.

It is also worth noting a couple of other useful facts.
The first is that the first three properties guarantee that∏

g∈G g(a) is fixed by every x ∈ G , so at the very most A′ can be
construed as the elements of A stabilized by all of G .
The second is that for torsion class groups, it suffices to consider
Galois actions on p−groups Sylow p−subgroups are always
characteristic.
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Here are a couple of conditions that arise using the interplay of
Galois groups and class groups.

Theorem
Let F be a Galois extension of degree pr with ring of integers R. If
A is the class group of R and S(q) is a nontrivial Sylow
q−subgroup of A, then q is either equal to p or q ≡ 1mod(p).

Note that this theorem illustrates why the quadratic case is so
(nicely) deceptive. All quadratic extensions (in characteristic 0) are
Galois and the previous highlights that “anything can happen.”
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Here is another theorem along these lines.

Theorem
Let F be a cyclic extension of odd prime order p with ring of
integers R. If A is the class group of R, then A cannot be cyclic of
order pn for any n ≥ 2.

Example

For a cyclic extensions of order 3, there are examples with
3−elementary abelian class group, but of course no cyclic of order
9. There is, however, an example with class group Z3 × Z9. If we
write the elements of Z3 × Z9 in the usual way, we have the
following orbits under the Galois action of the automorphism that
takes (1, 0) to (1, 3) and (0, 1) to (2, 4): {(0, 0)}, {(0, 3)}, {(0, 6)}
and
{(1, 0), (1, 3), (1, 6)}, {(2, 0), (2, 6), (2, 3)}, {(0, 1), (2, 4), (1, 4)},
{(1, 1), (0, 7), (2, 1)}, {(0, 2), (1, 8), (2, 8)}, {(1, 2), (2, 2), (0, 5)},
{(0, 4), (2, 7), (1, 7)}, {(1, 5), (2, 5), (0, 8)}
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For a cyclic extensions of order 3, there are examples with
3−elementary abelian class group, but of course no cyclic of order
9. There is, however, an example with class group Z3 × Z9. If we
write the elements of Z3 × Z9 in the usual way, we have the
following orbits under the Galois action of the automorphism that
takes (1, 0) to (1, 3) and (0, 1) to (2, 4): {(0, 0)}, {(0, 3)}, {(0, 6)}
and
{(1, 0), (1, 3), (1, 6)}, {(2, 0), (2, 6), (2, 3)}, {(0, 1), (2, 4), (1, 4)},
{(1, 1), (0, 7), (2, 1)}, {(0, 2), (1, 8), (2, 8)}, {(1, 2), (2, 2), (0, 5)},
{(0, 4), (2, 7), (1, 7)}, {(1, 5), (2, 5), (0, 8)}
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We can also take a given extension with Galois group G and use
“small” localizations to create smaller class groups.

Theorem
Let R be a Dedekind domain with torsion class group A and group
of automorphisms G. Suppose that x ∈ R is a nonzero nonunit and

(x) = Pe1
1 · · ·Pek

k .

Then Cl(R[ 1x ])
∼= A/G ⟨[P1], [P2], · · · , [Pk ]⟩ (where G < X > is

the group generated by all automorphic images of the elements in
X).
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The previous theorem allows us to excise a minimal amount of A
to produce (in many cases) a “large” homomorphic image of A. In
the case of rings of algebraic integers, this localization is spiritually
almost a ring of integers itself (in fact, it is the exact analog of
rings of integers if the base ring of Z were to be replaced by Z[ 1x ]
for some nonzero x).

This theorem also (again) underscores how galactically misleading
the quadratic case is; in this case, any homomorphic image can be
obtained in a finite localization (in the quadratic case, any
subgroup of the class group is stable with respect to the two
automorphisms).
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As a final remark, we note that it would be nice to determine if all
Galois actions on class groups can be achieved. This might be quite
hard if we are too restrictive (e.g. the status of the inverse Galois
problem is still unknown), but more general constructions might
save the day. We are currently considering this and other aspects.
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Thank you all!!

Thanks, Scott and Marco!
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