On factorization invariants of ideal extensions of free commutative monoids

Carmelo Cisto

University of Messina

July 24, 2024

AMS-UMI International Joint Meeting 2024, Palermo Special session: The Ideal Theory and Arithmetic of Rings, Monoids, and Semigroups

Joint work with:

Pedro A. García-Sánchez

University of Granada

and

David Llena

University of Almería

C, P. A. García-Sánchez, D. Llena, Ideal extensions of free commutative monoids, *arXiv:2311.06901*, 2023.

This work is dedicated to the memory of N. Baeth

Ideal extensions of free commutative monoids

Let \mathbb{N} be the additive monoid of non-negative integers.

For $I \subseteq \mathbb{N}$ non-empty, denote:

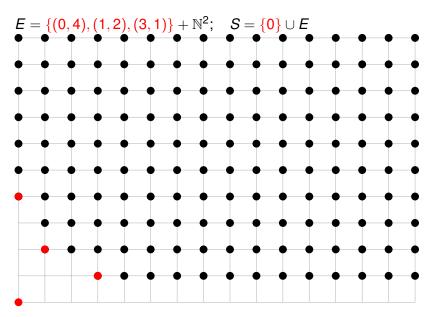
 $\mathbb{N}^{(I)} = \{(n_i)_{i \in I} \in \mathbb{N}^I \mid n_i = 0 \text{ but for finitely many } i \in I\} = \bigoplus_{i \in I} \mathbb{N}\mathbf{e}_i$

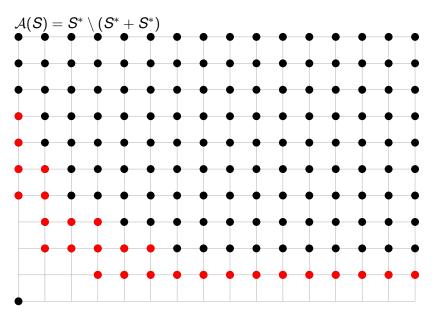
 $\mathbb{N}^{(l)}$ is the free monoid on the set $\{\mathbf{e}_i\}_{i \in l}$. A subset *E* of $\mathbb{N}^{(l)}$ is an ideal if $E + \mathbb{N}^{(l)} \subseteq E$

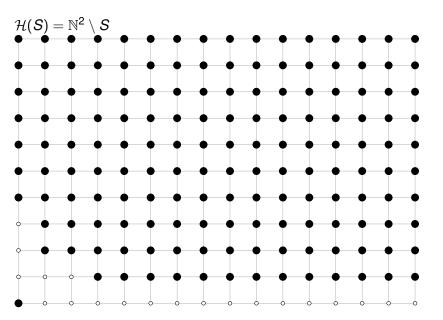
A submonoid S of $\mathbb{N}^{(I)}$ is an ideal extension of $\mathbb{N}^{(I)}$ if

 $S = E \cup \{\mathbf{0}\}$ for some ideal E of $\mathbb{N}^{(I)}$.

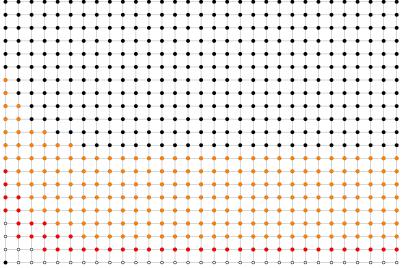
- *S* is a commutative, cancellative and reduced.
- *S* is atomic with set of atoms $\mathcal{A}(S) = S^* \setminus (S^* + S^*)$.







(1) $2\mathcal{H}(S) \subseteq \mathcal{H}(S) \cup \mathcal{A}(S) \cup 2\mathcal{A}(S)$ (2) $\mathcal{H}(S) + \mathcal{A}(S) \subseteq \mathcal{A}(S) \cup 2\mathcal{A}(S)$



Let *S* be a submonid of $\mathbb{N}^{(l)}$. The set of gaps of *S* is:

$$\mathcal{H}(S) = \mathbb{N}^{(l)} \setminus S$$

We say that S is a gap absorbing monoid if

• $2\mathcal{H}(S) \subseteq \mathcal{H}(S) \cup \mathcal{A}(S) \cup 2\mathcal{A}(S)$, and

$${\color{black}@{\hspace{0.1cm}}}{\color{black}{\mathcal H}}({\color{black}S})+{\color{black}{\mathcal A}}({\color{black}S})\subseteq {\color{black}{\mathcal A}}({\color{black}S})\cup 2{\color{black}{\mathcal A}}({\color{black}S}).$$

Proposition

Let $S \subseteq \mathbb{N}^{(l)}$ be a gap absorbing monoid. Then S is an ideal extension of $\mathbb{N}^{(l)}$.

Given $\mathbf{m}, \mathbf{n} \in \mathbb{N}^{(l)}$, we write $\mathbf{m} \le \mathbf{n}$ if $\mathbf{n} - \mathbf{m} \in \mathbb{N}^{(l)}$. For $\mathbf{m}, \mathbf{n} \in \mathbb{N}^{(l)}$, we denote

$$\llbracket m,n \rrbracket = \{ x \in \mathbb{N}^{(l)} : m \le x \le n \}.$$

Proposition

Let S be a submonoid of $\mathbb{N}^{(l)}$. The following conditions are equivalent:

- S is a gap absorbing monoid.
- 2 *S* is an ideal extension of $\mathbb{N}^{(l)}$ and for all $\mathbf{a}, \mathbf{b} \in 2\mathcal{A}(S)$, $\llbracket \mathbf{a}, \mathbf{b} \rrbracket \subseteq 2\mathcal{A}(S)$

Gap absorbing monoids in \mathbb{N}^2

Every ideal extension of $\mathbb N$ is a gap absorbing monoid. In $\mathbb N^2$ we have:

Proposition

Let S be an ideal extension of \mathbb{N}^2 . Then, for every $\mathbf{a}, \mathbf{b} \in 2\mathcal{A}(S)$ with $\mathbf{a} \leq \mathbf{b}$, we have that $[\![\mathbf{a}, \mathbf{b}]\!] \subseteq 2\mathcal{A}(S)$.

Corollary

Let S be a submonoid of \mathbb{N}^2 . Then, S is gap absorbing if and only if S is an ideal extension of \mathbb{N}^2 .

We have not counterexamples of ideal extensions *S* of $\mathbb{N}^{(l)}$, with $3 \le |l| \le \infty$, such that *S* is not gap absorbing.

Conjecture

Every ideal extension of $\mathbb{N}^{(l)}$ is gap absorbing.

If S is any additive monoid, we have the following relation:

 $\mathbf{a} \leq_{S} \mathbf{b}$ if $\mathbf{b} = \mathbf{a} + \mathbf{c}$ for some $\mathbf{c} \in S$.

To every $\mathbf{s} \in S$, we associate a graph $\mathbf{G}_{\mathbf{s}} = (V_{\mathbf{s}}, E_{\mathbf{s}})$

•
$$V_{s} = \{ a \in \mathcal{A}(S) \mid a \leq_{S} s \}$$
 is the set of vertices.

•
$$E_s = \{(a, b) \mid a + b \leq_S s\}$$
 is the set of edges.

Denote:

 $\mathsf{Betti}(\mathcal{S}) = \{ \mathbf{s} \in \mathcal{S} \mid \mathbf{G_s} \text{ is not connected } \}$

and its elements are called Betti elements of S.

Theorem

Let $S \subseteq \mathbb{N}^{(I)}$ be a gap absorbing monoid and let $\mathbf{s} \in S$. If \mathbf{s} is a Betti element, then $\mathbf{s} \in 2\mathcal{A}(S) \cup 3\mathcal{A}(S)$.

Delta sets

If
$$\mathbf{s} \in S$$
, denote:
• $Z(\mathbf{s}) = \left\{ (\lambda_{\mathbf{a}})_{\mathbf{a} \in \mathcal{A}(S)} \mid \sum_{\mathbf{a} \in \mathcal{A}(S)} \lambda_{\mathbf{a}} \mathbf{a} = \mathbf{s} \right\}$ set of factorizations of \mathbf{s}
• $L(\mathbf{s}) = \left\{ \sum_{\mathbf{a} \in \mathcal{A}(S)} \lambda_{\mathbf{a}} \mid (\lambda_{\mathbf{a}})_{\mathbf{a} \in \mathcal{A}(S)} \in Z(\mathbf{s}) \right\}$ set of lengths of \mathbf{s}
If $L(\mathbf{s}) = \{l_1 < l_2 < \dots < l_r\}$.
• $\Delta(\mathbf{s}) = \{l_2 - l_1, \dots, l_r - l_{r-1}\}$ is the delta set of \mathbf{s}
• $\Delta(S) = \bigcup_{\mathbf{s} \in S} \Delta(\mathbf{s})$ is the delta set of S
S. T. Chapman, P. A. García-Sánchez, D. Llena, A. Malyshev, D. Steinberg, On
the Delta set and the Betti elements of a BF-monoid, Arab. J. Math 1 (2012),

53-61.

Theorem

If S is a BF-monoid then:

$$\max \Delta(\boldsymbol{\mathcal{S}}) = \max\{\max \Delta(\boldsymbol{\mathsf{b}}) \mid \boldsymbol{\mathsf{b}} \in \mathsf{Betti}(\boldsymbol{\mathcal{S}})\}$$

N. Baeth, Complement-Finite Ideals. In: Chabert, JL., Fontana, M., Frisch, S., Glaz, S., Johnson, K. (eds) Algebraic, Number Theoretic, and Topological Aspects of Ring Theory. Springer, Cham, (2023).

If *S* is an ideal extension of \mathbb{N}^d for some positive integer *d*, such that $\mathbb{N}^d \setminus S$ is finite, then *S* is called a complement-finite ideal.

N. Baeth conjectured that if S is a complement finite ideal of \mathbb{N}^d then $\Delta(S) = \{1\}$.

Baeth conjecture on delta set holds for gap absorbing monoids:

Theorem

Let *S* be a gap absorbing monoid. Then, L(s) is an interval for every $s \in S$. Equivalently, $\Delta(S) = \{1\}$.

Catenary degree

Given $\mathbf{u} = (\lambda_{\mathbf{a}})_{\mathbf{a} \in \mathcal{A}(S)}$ and $\mathbf{v} = (\mu_{\mathbf{a}})_{\mathbf{a} \in \mathcal{A}(S)}$, denote:

$$\mathbf{u} \wedge \mathbf{v} = (\min(\lambda_{\mathbf{a}}, \mu_{\mathbf{a}}))_{\mathbf{a} \in \mathcal{A}(S)}$$

Define the distance between \mathbf{u} and \mathbf{v} as

$$\mathsf{d}(\mathbf{u},\mathbf{v}) = \max\{|\mathbf{u} - (\mathbf{u} \wedge \mathbf{v})|, |\mathbf{v} - (\mathbf{u} \wedge \mathbf{v})|\}.$$

If $\mathbf{u}, \mathbf{v} \in Z(\mathbf{s})$, for $\mathbf{s} \in S$, then an *N*-chain joining \mathbf{u} and \mathbf{v} is a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_n \in Z(\mathbf{s})$ such that $\mathbf{u}_1 = \mathbf{u}, \mathbf{u}_n = \mathbf{v}$, and $d(\mathbf{u}_i, \mathbf{u}_{i+1}) \leq N$ for all $i \in \{1, \ldots, n-1\}$.

The catenary degree of \mathbf{s} , $\mathbf{c}(\mathbf{s})$, is the minimum positive integer N such that for any two factorizations of \mathbf{s} there exists an N-chain joining them.

The catenary degree of S is defined as

$$\mathsf{c}(S) = \sup\{\mathsf{c}(\mathbf{s}) : \mathbf{s} \in S\}.$$

S.T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, J.C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscripta Math. 120, 253–264 (2006)

Proposition

If S is not half factorial, then $c(S) = \sup\{c(b) : b \in Betti(S)\}$.

For gap absorbing monoid we can prove:

Theorem

Let S be a gap absorbing monoid. Then $c(S) \le 4$.

Corollary

Let S be a gap absorbing monoid. If $Betti(S) \subseteq 2\mathcal{A}(S)$, then $c(S) \leq 3$.

In particular, if S is a gap absorbing monoid in \mathbb{N}^2 then $c(S) \leq 3$.

The ω -primality of **s**, denoted $\omega(\mathbf{s})$, is the least positive integer *N* such that:

whenever
$$\mathbf{s} \leq_{S} \mathbf{s}_{1} + \dots + \mathbf{s}_{n}$$
 for some $\mathbf{s}_{1}, \dots, \mathbf{s}_{n} \in S$
 \Downarrow
 $\mathbf{s} \leq_{S} \sum_{i \in J} \mathbf{s}_{i}$ for some $J \subseteq \{1, \dots, n\}$ with $|J| \leq N$.

The ω -primality of *S* is defined as

$$\omega(S) = \sup\{\omega(\mathbf{a}) : \mathbf{a} \in \mathcal{A}(S)\}.$$

$\omega\text{-}\mathrm{primality}$ of ideal extensions.

Theorem

Let S be an ideal extension of $\mathbb{N}^{(l)}$. For every $\mathbf{a} \in \mathcal{A}(S)$, $\omega(\mathbf{a}) \leq \|\mathbf{a}\|_1 + 1$. In particular,

$$\omega(S) \leq 1 + \sup_{\mathbf{a} \in \mathcal{A}(S)} \|\mathbf{a}\|_1.$$

Proposition

Let *S* be an extension ideal of $\mathbb{N}^{(l)}$. Let $\mathbf{a} \in \mathcal{A}(S)$ and suppose there exists $\mathbf{b} \in S^*$ such that $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$. Then $\omega(\mathbf{a}) \geq ||\mathbf{a}||_1$.

Proposition

Let S be an ideal extension of \mathbb{N}^k for some positive integer k. Then, $\omega(S) < \infty$ if and only if $|\mathcal{H}(S)| < \infty$.

Let $J \subseteq I \subseteq \mathbb{N}$, for $\mathbf{x} \in \mathbb{N}^{(I)}$ we define $|\mathbf{x}|_J = \sum_{J \in I} x_i$.

Let $T \subseteq \mathbb{N}$ be a numerical semigroup, define the following set:

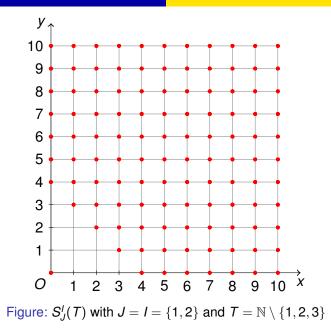
$$\mathcal{S}'_J(\mathcal{T}) = \{\mathbf{x} \in \mathbb{N}^{(I)} : |\mathbf{x}|_J \in \mathcal{T} \setminus \{\mathbf{0}\}\} \cup \{\mathbf{0}\}.$$

 $S'_{J}(T)$ is a submonoid of $\mathbb{N}^{(l)}$, that we call backslash monoid.

Proposition

Let T be a numerical semigroup. Then, $S_J^l(T)$ is a gap absorbing semigroup if and only if $T = \mathbb{N} \setminus \{1, ..., n-1\}$ for some $n \in \mathbb{N}$.

15/19



Proposition

Suppose $T = \mathbb{N} \setminus \{1, \dots, n-1\}$ with $n \ge 2$ and $\emptyset \ne J \subseteq I$. The following holds:

- Betti $(S'_J(T)) \subseteq 2\mathcal{A}(S'_J(T)).$
- **2** $c(S'_J(T)) = 3$
- ③ *If* |*I*| > 1 *then:*
 - $\omega(S_{I}^{I}(T)) = 2n 1$, and
 - $\omega(S'_J(T)) = \infty$ for any proper subset J of I.

In particular, in $\mathbb{N}^{(l)}$ with |l| > 1 it is possible to obtain gap absorbing monoids with ω -primality as large as desired.

- Is every ideal extension gap absorbing?
- For every ideal extension, is the minimal length of a Betti element at most two?
- Is the catenary degree of an ideal extension at most three?
- For the ω-primality, if S is an ideal extension we know that ω(S) is upper bounded by the supremum of 1-norms of its atoms plus one. We have not found any example where this upper bound is attained.

Thank you for your attention

19/19