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Ideal extensions of free commutative monoids

Let N be the additive monoid of non-negative integers.

For I ⊆ N non-empty, denote:

N(I) = {(ni)i∈I ∈ NI | ni = 0 but for finitely many i ∈ I} =
⊕
i∈I

Nei

N(I) is the free monoid on the set {ei}i∈I .

A subset E of N(I) is an ideal if E + N(I) ⊆ E

A submonoid S of N(I) is an ideal extension of N(I) if

S = E ∪ {0} for some ideal E of N(I).

S is a commutative, cancellative and reduced.
S is atomic with set of atoms A(S) = S∗ \ (S∗ + S∗).
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E = {(0,4), (1,2), (3,1)}+ N2; S = {0} ∪ E
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A(S) = S∗ \ (S∗ + S∗)
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H(S) = N2 \ S

Carmelo Cisto (University of Messina) Ideal extension of free commutative monoids July 24, 2024 4 / 19



(1) 2H(S) ⊆ H(S) ∪ A(S) ∪ 2A(S)
(2) H(S) +A(S) ⊆ A(S) ∪ 2A(S)
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Gap absorbing monoids

Let S be a submonid of N(I). The set of gaps of S is:

H(S) = N(I) \ S

We say that S is a gap absorbing monoid if

1 2H(S) ⊆ H(S) ∪ A(S) ∪ 2A(S), and

2 H(S) +A(S) ⊆ A(S) ∪ 2A(S).

Proposition

Let S ⊆ N(I) be a gap absorbing monoid. Then S is an ideal extension
of N(I).
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Given m,n ∈ N(I), we write m ≤ n if n − m ∈ N(I).

For m,n ∈ N(I), we denote

Jm,nK = {x ∈ N(I) : m ≤ x ≤ n}.

Proposition

Let S be a submonoid of N(I). The following conditions are equivalent:

1 S is a gap absorbing monoid.

2 S is an ideal extension of N(I) and for all a,b ∈ 2A(S),
Ja,bK ⊆ 2A(S)
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Gap absorbing monoids in N2

Every ideal extension of N is a gap absorbing monoid. In N2 we have:

Proposition

Let S be an ideal extension of N2. Then, for every a,b ∈ 2A(S) with
a ≤ b, we have that Ja,bK ⊆ 2A(S).

Corollary

Let S be a submonoid of N2. Then, S is gap absorbing if and only if S
is an ideal extension of N2.

We have not counterexamples of ideal extensions S of N(I), with
3 ≤ |I| ≤ ∞, such that S is not gap absorbing.

Conjecture

Every ideal extension of N(I) is gap absorbing.
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Betti elements

If S is any additive monoid, we have the following relation:

a ≤S b if b = a + c for some c ∈ S.

To every s ∈ S, we associate a graph Gs = (Vs,Es)

Vs = {a ∈ A(S) | a ≤S s} is the set of vertices.
Es = {(a,b) | a + b ≤S s} is the set of edges.

Denote:
Betti(S) = {s ∈ S | Gs is not connected }

and its elements are called Betti elements of S.

Theorem

Let S ⊆ N(I) be a gap absorbing monoid and let s ∈ S. If s is a Betti
element, then s ∈ 2A(S) ∪ 3A(S).
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Delta sets

If s ∈ S, denote:
Z(s) =

{
(λa)a∈A(S) |

∑
a∈A(S) λaa = s

}
set of factorizations of s

L(s) =
{∑

a∈A(S) λa | (λa)a∈A(S) ∈ Z(s)
}

set of lengths of s

If L(s) = {l1 < l2 < · · · < lr}.

∆(s) = {l2 − l1, . . . , lr − lr−1} is the delta set of s

∆(S) =
⋃

s∈S ∆(s) is the delta set of S

S. T. Chapman, P. A. García-Sánchez, D. Llena, A. Malyshev, D. Steinberg, On
the Delta set and the Betti elements of a BF-monoid, Arab. J. Math 1 (2012),
53–61.

Theorem
If S is a BF-monoid then:

max∆(S) = max{max∆(b) | b ∈ Betti(S)}
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N. Baeth, Complement-Finite Ideals. In: Chabert, JL., Fontana, M., Frisch, S.,
Glaz, S., Johnson, K. (eds) Algebraic, Number Theoretic, and Topological
Aspects of Ring Theory. Springer, Cham, (2023).

If S is an ideal extension of Nd for some positive integer d , such that
Nd \ S is finite, then S is called a complement-finite ideal.

N. Baeth conjectured that if S is a complement finite ideal of Nd

then ∆(S) = {1}.

Baeth conjecture on delta set holds for gap absorbing monoids:

Theorem

Let S be a gap absorbing monoid. Then, L(s) is an interval for every
s ∈ S. Equivalently, ∆(S) = {1}.
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Catenary degree

Given u = (λa)a∈A(S) and v = (µa)a∈A(S), denote:

u ∧ v = (min(λa, µa))a∈A(S)

Define the distance between u and v as

d(u,v) = max{|u − (u ∧ v)|, |v − (u ∧ v)|}.

If u,v ∈ Z(s), for s ∈ S, then an N-chain joining u and v is a sequence
u1, . . . ,un ∈ Z(s) such that u1 = u, un = v, and d(ui ,ui+1) ≤ N for all
i ∈ {1, . . . ,n − 1}.

The catenary degree of s, c(s), is the minimum positive integer N such
that for any two factorizations of s there exists an N-chain joining them.

The catenary degree of S is defined as

c(S) = sup{c(s) : s ∈ S}.
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S.T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, J.C. Rosales,
The catenary and tame degree in finitely generated commutative cancellative
monoids. Manuscripta Math. 120, 253–264 (2006)

Proposition

If S is not half factorial, then c(S) = sup{c(b) : b ∈ Betti(S)}.

For gap absorbing monoid we can prove:

Theorem

Let S be a gap absorbing monoid. Then c(S) ≤ 4.

Corollary

Let S be a gap absorbing monoid. If Betti(S) ⊆ 2A(S), then c(S) ≤ 3.

In particular, if S is a gap absorbing monoid in N2 then c(S) ≤ 3.
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ω-primality

The ω-primality of s, denoted ω(s), is the least positive integer N such
that:

whenever s ≤S s1 + · · ·+ sn for some s1, . . . ,sn ∈ S

⇓

s ≤S
∑

j∈J sj for some J ⊆ {1, . . . ,n} with |J| ≤ N.

The ω-primality of S is defined as

ω(S) = sup{ω(a) : a ∈ A(S)}.
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ω-primality of ideal extensions.

Theorem

Let S be an ideal extension of N(I). For every a ∈ A(S),
ω(a) ≤ ∥a∥1 + 1. In particular,

ω(S) ≤ 1 + sup
a∈A(S)

∥a∥1.

Proposition

Let S be an extension ideal of N(I). Let a ∈ A(S) and suppose there
exists b ∈ S∗ such that a ∧ b = 0. Then ω(a) ≥ ∥a∥1.

Proposition

Let S be an ideal extension of Nk for some positive integer k. Then,
ω(S) < ∞ if and only if |H(S)| < ∞.
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Notable examples

Let J ⊆ I ⊆ N, for x ∈ N(I) we define |x|J =
∑

J∈I xi .

Let T ⊆ N be a numerical semigroup, define the following set:

SI
J(T ) = {x ∈ N(I) : |x|J ∈ T \ {0}} ∪ {0}.

SI
J(T ) is a submonoid of N(I), that we call backslash monoid.

Proposition

Let T be a numerical semigroup. Then, SI
J(T ) is a gap absorbing

semigroup if and only if T = N \ {1, . . . ,n − 1} for some n ∈ N.
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Figure: SI
J(T ) with J = I = {1,2} and T = N \ {1,2,3}
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Proposition

Suppose T = N \ {1, . . . ,n − 1} with n ≥ 2 and ∅ ≠ J ⊆ I. The
following holds:

1 Betti(SI
J(T )) ⊆ 2A(SI

J(T )).

2 c(SI
J(T )) = 3

3 If |I| > 1 then:
ω(SI

I (T )) = 2n − 1,and

ω(SI
J(T )) = ∞ for any proper subset J of I.

In particular, in N(I) with |I| > 1 it is possible to obtain gap absorbing
monoids with ω-primality as large as desired.
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Open questions

Is every ideal extension gap absorbing?

For every ideal extension, is the minimal length of a Betti element
at most two?

Is the catenary degree of an ideal extension at most three?

For the ω-primality, if S is an ideal extension we know that ω(S) is
upper bounded by the supremum of 1-norms of its atoms plus
one. We have not found any example where this upper bound is
attained.
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Thank you for your attention
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