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Ingredients

Definition
A topological space X is spectral if

X is quasi-compact;

X has a basis B of quasi-compact open sets such that
A,B ∈ B =⇒ A∩B ∈ B;

X is sober.

Definition
Let R be a commutative ring with 1. Then the Zariski topology on
Spec(R) := {prime ideals of R} is given by the closed sets of the type

V(i) := {p ∈ Spec(R) | p⊇ i} (i�R)

Theorem (Hochster, 1969)
X is spectral iff X ∼= Spec(R).
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Ubiquity of spectra

R commutative ring with 1 7→ Spec(R).

L bounded distributive lattice 7→ Spec(L).

S commutative semiring with 1 7→ Spec(S).

M commutative monoid 7→ Spec(M).

G group 7→ Spec(G).

R noncommutative ring with 1 7→ Spec(R).

R commutative ring without 1 7→ Spec(R).

1 A. Facchini, C.A. Finocchiaro, G. Janelidze, Abstractly constructed
prime spectra. Algebra Universalis 83 (2022), no. 1, Paper No. 8, 38 pp.

2 A. Facchini, C.A. Finocchiaro, Multiplicative lattices: maximal implies
prime and related questions, J. Algebra Appl., to appear.
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Multiplicative lattices

A multiplicative lattice is a complete lattice L endowed with an operation
· : L×L → L, (x,y) 7→ x · y

satisfying x · y ≤ x∧ y, for every x,y ∈ L.
W. Krull, Axiomatische Begründung der allgemeinen Idealtheorie. Sitzber. d. phys.-med. Soc.
Erlangen 56, 47-63 (1924).

M. Ward, R. Dilworth, Residuated lattices. Trans. Amer. Math. Soc. 45 (1939), no. 3, 335-354.

D. D. Anderson, E. W. Johnson, Abstract ideal theory from Krull to the present. In: Anderson,
D.D., Papick, I.J. (eds.) Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999).
Lecture Notes in Pure and Applied Mathematics, vol. 220. Dekker, New York, pp. 27-47 (2001)

Examples
Let R be a ring and let L := I(R) = {two-sided ideals of R}. · is the
usual multiplication of ideals. Notice that i · j⊆ i∩ j, for every i, j ∈ L.

Let L be a complete lattice. Then we can take ·= ∧.

Let G be a group and let L := {normal subgroups of G}. Then
H ·K := [H,K].
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Warning: · can fail to be commutative!!

Example
·= multiplication of ideals of noncommutative rings.

Warning: · can fail to be associative!!

Example
Let G := S3, L := {normal subgroups of G}= {G,A3,{1}}, A ·B := [A,B],
for A,B ∈ L. Then

[[G,G],A3] = [A3,A3] = {1}

[G, [G,A3]] = [G,A3] = A3
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IDEA: if R is a ring and p ∈ I(R)\{R}, then p is prime iff whenever
a,b ∈ I(R), then a ·b⊆ p implies a⊆ p or b⊆ p.

Definition
Let L be a multiplicative lattice, let 1 (resp., 0) be the maximum (resp., the
minimum) of L. An element p ∈ L is prime if
(1) p ̸= 1 and
(2) for every x,y ∈ L, x · y ≤ p implies x ≤ p or y ≤ p.

The set Spec(L) := {prime elements of L} is the prime spectrum of L.

Example
If R is a ring, Spec(R) = Spec(I(R)).
if G is a group, Spec(G) = Spec({normal subgroups of G}).

E. Schenkman, The similarity between the properties of ideals in commutative rings and the
properties of normal subgroups of groups. Proc. Am. Math. Soc. 9, 375-381 (1958)

A. Facchini, F. de Giovanni and M. Trombetti, Spectra of groups, Algebras and Representation
Theory (2022).
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The Zariski topology

Let L be a multiplicative lattice. For every x ∈ L, let

V(x) := {p ∈ Spec(L) | x ⩽ p} D(x) := Spec(L)\V(x).

For every x,y ∈ L and S ⊆ L we have:

V(1) = /0 and V(0) = Spec(L);

V(x)∪V(y) = V(x · y);⋂
s∈S V(s) = V(

∨
S).

{V(x) | x ∈ L}=: {closed sets of the Zariski topology}.

Proposition
Spec(L) is sober.
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Definition
Let L be a multiplicative lattice.

An element x ∈ L is a radical element if x =
∧

S, for some S ⊆ Spec(L).
Let

Rad(L) := {radical elements of L}.

For every x ∈ L, let
√

x :=
∧

V(x) be the radical of x.

The map
√
− : L → L, x 7→

√
x, is a closure operator.

For every x,y ∈ L, V(x) = V(
√

x) and
√

x ⩽
√

y ⇐⇒ V(y)⊆ V(x).
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Let X a complete lattice. Recall that an element c ∈ X is compact if whenever S ⊆ X and c ⩽
∨

S then

c ⩽
∨

F, for some finite subet F ⊆ S. The lattice X is said to be algebraic if every element of X is the join

of compact elements of X.

Let L be a multiplicative lattice and let
O(L) := {open subsets of Spec(L)}.

The mapping Rad(L)→O(L), x 7→ D(x) is an isomorphism of posets.

In particular, Rad(L) is a complete lattice, but given x,y ∈ Rad(L), it can
happen that x · y /∈ Rad(L).

However, Rad(L) is a multiplicative lattice (take · := infimum).

Spec(L) = Spec(Rad(L)).

Proposition
Let L be a multiplicative lattice. Then the following are equivalent.

1 Spec(L) is spectral.
2 Rad(L) is algebraic, 1 is compact in Rad(L), and if x,y are compact in

Rad(L), then so is x∧ y.
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Definitions
Let L be a multiplicative lattice.

We say that L satisfies the monotonicity condition if, for every
x,y,z, t ∈ L, (x ⩽ y,z ⩽ t)⇒ x · z ⩽ y · t.

We say that L satisfies the weak Kaplansky condition if for every
compact element x ∈ L, then x2 is still compact.

We say that L satisfies the Kaplansky condition if, for all compact
elements x,y ∈ L, then x · y is still compact.

We say that L is m-distributive if
x · (y∨ z) = (x · y)∨ (x · z) and (x∨ y) · z = (x · z)∨ (y · z) ∀x,y,z ∈ L.
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Theorem
Let L be a multiplicative lattice with the following properties:

1 L is algebraic, m-distributive and 1 is compact;
2 L satisfies the weak Kaplansky condition;
3 if x,y ∈ L are compact, there is a compact element z ∈ L such that√

x · y =√
z.

Then Spec(L) is spectral.

Special case
Let L be a multiplicative lattice with the following properties:

1 L is algebraic, m-distributive and 1 is compact;
2 L satisfies the Kaplansky condition.

Then Spec(L) is spectral.
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Definition (Kaplansky, 1974)
A ring R with 1 is neo-commutative if

(a,b⊴ R finitely generated )⇒ ab finitely generated

Corollary
If R is neo-commutative, then Spec(R) is spectral.
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A prime ideal principle

Let R be a commutative ring.

Theorem (Krull, 1929)
Let S ⊆ R be multiplicative. Then every maximal element of

{i ∈ I(R) | i∩S = /0}

is prime.

Theorem (Cohen, 1950)
R is Noetherian iff every prime ideal of R is finitely generated.

Carmelo A. Finocchiaro 13 / 15



A prime ideal principle

Let R be a commutative ring.

Theorem (Krull, 1929)
Let S ⊆ R be multiplicative. Then every maximal element of

{i ∈ I(R) | i∩S = /0}

is prime.

Theorem (Cohen, 1950)
R is Noetherian iff every prime ideal of R is finitely generated.

Carmelo A. Finocchiaro 13 / 15



A prime ideal principle

Let L be a multiplicative lattice, A ⊆ L, a,b ∈ L, and let

(a :l b) :=
∨
{x ∈ L | x ·b ≤ a} (a :r b) :=

∨
{x ∈ L | b · x ≤ a}.

We say that L is A-generated if, for every x ∈ L, x =
∨

F, for some F ⊆ A.
A set F ⊆ L is left A-Oka if 1 ∈ F and, given elements x ∈ A,y ∈ L,

(x∨ y ∈ F and (y :l x) ∈ F)⇒ y ∈ F.
A set F ⊆ L is A-Oka if 1 ∈ F and, given elements x ∈ A,y ∈ L,

(x∨ y ∈ F,(y :l x) ∈ F and (y :r x) ∈ F)⇒ y ∈ F.
A set F ⊆ L is A-Ako if 1 ∈ F and, given elements x,y ∈ A,z ∈ L,

(x∨ z ∈ F and y∨ z ∈ F)⇒ (x · y)∨ z ∈ F.

Example
Let R be a commutative ring, L := I(R), A := {xR | x ∈ R}

1 {finitely generated ideals of R} is A-Oka.
2 If S ⊆ R is multiplicative, then {i ∈ I(R) | i∩S ̸= /0} is A-Ako.
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A prime ideal principle

Theorem
Let L be a multiplicative lattice with the monotonicity condition and that is
A-generated, for some A ⊆ L. Assume that a set F ⊆ L satisfies one of the
following conditions:

F is a left A-Oka subset;

F is a right A-Oka subset;

F is an A-Oka subset and the multiplication of L is associative;

F is an A-Ako subset.

Then every maximal element of L\F is prime.
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